About Linearization of Infinite-Dimensional Hamiltonian Systems

被引:0
作者
Michela Procesi
Laurent Stolovitch
机构
[1] Universitá degli Studi Roma Tre,Dipartimento di Matematica e Fisica
[2] L.go Murialdo,CNRS and Laboratoire J.
[3] Université Côte d’Azur,A. Dieudonné U.M.R. 7351
来源
Communications in Mathematical Physics | 2022年 / 394卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article is concerned with analytic Hamiltonian dynamical systems in infinite dimension in a neighborhood of an elliptic fixed point. Given a quadratic Hamiltonian, we consider the set of its analytic higher order perturbations. We first define the subset of elements which are formally symplectically conjugated to a (formal) Birkhoff normal form. We prove that if the quadratic Hamiltonian satisfies a Diophantine-like condition and if such a perturbation is formally symplectically conjugated to the quadratic Hamiltonian, then it is also analytically symplectically conjugated to it. Of course what is an analytic symplectic change of variables depends strongly on the choice of the phase space. Here we work on periodic functions with Gevrey regularity.
引用
收藏
页码:39 / 72
页数:33
相关论文
共 101 条
  • [1] Baldi P(2018)Time quasi-periodic gravity water waves in finite depth Invent. Math. 214 739-911
  • [2] Berti M(1999)Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations Math. Z. 230 345-387
  • [3] Haus E(1999)On long time stability in Hamiltonian perturbations of nonresonant linear PDE’s Nonlinearity 12 823-850
  • [4] Montalto R(2003)Birkhoff normal form for some nonlinear PDEs Commun. Math. Phys. 234 253-285
  • [5] Bambusi D(2007)Almost global existence for Hamiltonian semilinear Klein–Gordon equations with small Cauchy data on Zoll manifolds Commun. Pure Appl. Math. 60 1665-1690
  • [6] Bambusi D(2003)Forme normale pour NLS en dimension quelconque C. R. Math. Acad. Sci. Paris 337 409-414
  • [7] Bambusi D(2006)Birkhoff normal form for partial differential equations with tame modulus Duke Math. J. 135 507-567
  • [8] Bambusi D(2020)Convergence to normal forms of integrable PDEs Comm. Math. Phys. 376 1441-1470
  • [9] Delort J-M(2016)The steep Nekhoroshev’s theorem Commun. Math. Phys. 342 569-601
  • [10] Grébert B(1985)A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems Celest. Mech. 37 1-25