Import vertical characteristic of rain streak for single image deraining

被引:0
|
作者
Zhexin Zhang
Jiajun Ding
Jun Yu
Yiming Yuan
Jianping Fan
机构
[1] Hangzhou Dianzi University,Zhuoyue Honors College
[2] Hangzhou Dianzi University,Computer and Software School
来源
Multimedia Systems | 2023年 / 29卷
关键词
Single image deraining; Vertical module; Contrastive learning;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, deep convolutional neural networks show good effect for single image deraining. These networks always adopt the conventional convolution method to extract features, which may neglect the characteristic of rain streak. A novelty vertical module is proposed to focus on the vertical characteristic of rain streak. Such module uses 1 ×X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times X$$\end{document} convolution kernel to extract the vertical information of rain streaks and a X×X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \times X$$\end{document} convolution kernel to keep relative location information. Use this module in the front of deraining network can better detach rain streaks from background. In addition, the contrastive learning is employed to improve the performance of the model. Extensive experimental results demonstrated the superiority of the deraining methods with the proposed methods in comparison with the base ones.
引用
收藏
页码:105 / 115
页数:10
相关论文
共 50 条
  • [41] BILATERAL RECURRENT NETWORK FOR SINGLE IMAGE DERAINING
    Shang, Wei
    Zhu, Pengfei
    Ren, Dongwei
    Shi, Hong
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2503 - 2507
  • [42] Dual Heterogeneous Complementary Networks for Single Image Deraining
    Nanba, Yuuto
    Miyata, Hikaru
    Han, Xian-Hua
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 567 - 576
  • [43] An unsupervised generative adversarial network for single image deraining
    Song, Zhiying
    Guo, Yuting
    Ma, Zifan
    Tang, Ruocong
    Liu, Linfeng
    IET IMAGE PROCESSING, 2021, 15 (13) : 3105 - 3117
  • [44] A Single Image Deraining Algorithm Based on Swin Transformer
    Gao T.
    Wen Y.
    Chen T.
    Zhang J.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2023, 57 (05): : 613 - 623
  • [45] Bijective Multi-mode Deraining on Single Image
    Qiu, Song
    Xu, Wei
    Sun, Li
    Zhai, Gaojie
    Chen, Xinyuan
    Li, Qingli
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [46] Recursive residual Fourier transformation for single image deraining
    Bao, Zhiyuan
    Shao, Mingwen
    Wan, Yecong
    Qiao, Yuanjian
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (05) : 1743 - 1754
  • [47] Double Recurrent Dense Network for Single Image Deraining
    Lan, Yang
    Xia, Haiying
    Li, Haisheng
    Song, Shuxiang
    Wu, Lingyu
    IEEE ACCESS, 2020, 8 : 30615 - 30627
  • [48] DRT: A Lightweight Single Image Deraining Recursive Transformer
    Liang, Yuanchu
    Anwar, Saeed
    Liu, Yang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 588 - 597
  • [49] Selective Wavelet Attention Learning for Single Image Deraining
    Huaibo Huang
    Aijing Yu
    Zhenhua Chai
    Ran He
    Tieniu Tan
    International Journal of Computer Vision, 2021, 129 : 1282 - 1300
  • [50] Degradation-Aware Transformer for Single Image Deraining
    Zhao, Peijun
    Wang, Tongjun
    IEEE ACCESS, 2023, 11 : 97274 - 97283