An algorithm for computing the eigenvalues of block companion matrices

被引:0
作者
Katrijn Frederix
Steven Delvaux
Marc Van Barel
机构
[1] KU Leuven,Department of Computer Science
[2] KU Leuven,Department of Mathematics
来源
Numerical Algorithms | 2013年 / 62卷
关键词
Givens-weight representation; Companion matrix; Rank structured matrix; Primary 65F; Secondary 65F30; 65F15; 15A03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose a method for computing the roots of a monic matrix polynomial. To this end we compute the eigenvalues of the corresponding block companion matrix C. This is done by implementing the QR algorithm in such a way that it exploits the rank structure of the matrix. Because of this structure, we can represent the matrix in Givens-weight representation. A similar method as in Chandrasekaran et al. (Oper Theory Adv Appl 179:111–143, 2007), the bulge chasing, is used during the QR iteration. For practical usage, matrix C has to be brought in Hessenberg form before the QR iteration starts. During the QR iteration and the transformation to Hessenberg form, the property of the matrix being unitary plus low rank numerically deteriorates. A method to restore this property is used.
引用
收藏
页码:261 / 287
页数:26
相关论文
共 28 条
[1]  
Bini DA(2004)On the shifted Electron. Trans. Numer. Anal. 18 137-152
[2]  
Daddi F(2007) iteration applied to companion matrices SIAM J. Matrix Anal. Appl. 29 566-585
[3]  
Gemignani L(2007)Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices Oper. Theory Adv. Appl. 179 111-143
[4]  
Bini DA(1981)A fast QR algorithm for companion matrices Numer. Math. 36 177-195
[5]  
Eidelman Y(2007)A divide and conquer method for the symmetric tridiagonal eigenproblem SIAM J. Matrix Anal. Appl. 29 1147-1170
[6]  
Gemignani L(2008)A Givens-weight representation for rank structured matrices J. Comput. Appl. Math. 213 268-287
[7]  
Gohberg IC(2008)Eigenvalue computation for unitary rank structured matrices SIAM J. Matrix Anal. Appl. 30 464-490
[8]  
Chandrasekaran S(1987)A SIAM J. Sci. Stat. Comput. 3 139-154
[9]  
Gu M(1995)-based solver for rank structured matrices Math. Comput. 64 763-776
[10]  
Xia J(2000)A fully parallel algorithm for the symmetric eigenvalue problem Linear Algebra Appl. 309 121-151