“sCT-Feasibility” - a feasibility study for deep learning-based MRI-only brain radiotherapy

被引:0
|
作者
Johanna Grigo
Juliane Szkitsak
Daniel Höfler
Rainer Fietkau
Florian Putz
Christoph Bert
机构
[1] Universitätsklinikum Erlangen,Department of Radiation Oncology
[2] Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),undefined
[3] Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN),undefined
来源
Radiation Oncology | / 19卷
关键词
MRI; Radiotherapy; MRI-only workflow; sCT; Synthetic CT; Deep learning; Stereotactic radiotherapy; MRonly; Artificial intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Development and evaluation of a deep learning based artificial intelligence for automatic identification of gold fiducial markers in an MRI-only prostate radiotherapy workflow
    Gustafsson, Christian Jamtheim
    Sward, Johan
    Adalbjornsson, Stefan Ingi
    Jakobsson, Andreas
    Olsson, Lars E.
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (22):
  • [22] Assessment of Deep Learning-Based Triage Application for Acute Ischemic Stroke on Brain MRI in the ER
    Kim, Jimin
    Oh, Se Won
    Lee, Ha Young
    Choi, Moon Hyung
    Meyer, Heiko
    Huwer, Stefan
    Zhao, Gengyan
    Gibson, Eli
    Han, Dongyeob
    ACADEMIC RADIOLOGY, 2024, 31 (11) : 4621 - 4628
  • [23] Deep learning-based bone suppression in chest radiographs using CT-derived features: a feasibility study
    Ren, Ge
    Xiao, Haonan
    Lam, Sai-Kit
    Yang, Dongrong
    Li, Tian
    Teng, Xinzhi
    Qin, Jing
    Cai, Jing
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (12) : 4807 - 4819
  • [24] A feasibility study on deep learning-based individualized 3D dose distribution prediction
    Ma, Jianhui
    Nguyen, Dan
    Bai, Ti
    Folkerts, Michael
    Jia, Xun
    Lu, Weiguo
    Zhou, Linghong
    Jiang, Steve
    MEDICAL PHYSICS, 2021, 48 (08) : 4438 - 4447
  • [25] Automated quantification of brain PET in PET/CT using deep learning-based CT-to-MR translation: a feasibility study
    Kim, Daesung
    Choo, Kyobin
    Lee, Sangwon
    Kang, Seongjin
    Yun, Mijin
    Yang, Jaewon
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2025,
  • [26] The feasibility of early detecting coronary artery disease using deep learning-based algorithm based on electrocardiography
    Tang, Panli
    Wang, Qi
    Ouyang, Hua
    Yang, Songran
    Hua, Ping
    AGING-US, 2023, 15 (09): : 3524 - 3537
  • [27] Feasibility evaluation of novel AI-based deep-learning contouring algorithm for radiotherapy
    Bustos, Luis Maduro A.
    Sarkar, Abhirup
    Doyle, Laura A.
    Andreou, Kelly
    Noonan, Jodie
    Nurbagandova, Diana
    Shah, SunJay A.
    Irabor, Omoruyi Credit
    Mourtada, Firas
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (11):
  • [28] A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis
    Andreasen, Daniel
    Van Leemput, Koen
    Edmund, Jens M.
    MEDICAL PHYSICS, 2016, 43 (08) : 4742 - 4752
  • [29] Deep learning for assessing image quality in bi-parametric prostate MRI: A feasibility study
    Alis, Deniz
    Kartal, Mustafa Said
    Seker, Mustafa Ege
    Guroz, Batuhan
    Basar, Yeliz
    Arslan, Aydan
    Sirolu, Sabri
    Kurtcan, Serpil
    Denizoglu, Nurper
    Tuzun, Umit
    Yildirim, Duzgun
    Oksuz, Ilkay
    Karaarslan, Ercan
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 165
  • [30] Deep learning-based Monte Carlo dose prediction for heavy-ion online adaptive radiotherapy and fast quality assurance: A feasibility study
    He, Rui
    Wang, Jian
    Wu, Wei
    Zhang, Hui
    Liu, Yinuo
    Luo, Ying
    Zhang, Xinyang
    Ma, Yuanyuan
    Liu, Xinguo
    Li, Yazhou
    Peng, Haibo
    He, Pengbo
    Li, Qiang
    MEDICAL PHYSICS, 2025,