Analysis of an Augmented HDG Method for a Class of Quasi-Newtonian Stokes Flows

被引:0
|
作者
Gabriel N. Gatica
Filánder A. Sequeira
机构
[1] Universidad de Concepción,Centro de Investigación en Ingeniería Matemática, Departamento de Ingeniería Matemática
[2] Universidad Nacional de Costa Rica,Escuela de Matemática
[3] Universidad de Concepción,Centro de Investigación en Ingeniería Matemática, Departamento de Ingeniería Matemática
来源
关键词
Nonlinear Stokes model; Mixed finite element method ; Hybridized discontinuous Galerkin method; Augmented formulation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for numerically solving a class of nonlinear Stokes models arising in quasi-Newtonian fluids. Similarly as in previous papers dealing with the application of mixed finite element methods to these nonlinear models, we use the incompressibility condition to eliminate the pressure, and set the velocity gradient as an auxiliary unknown. In addition, we enrich the HDG formulation with two suitable augmented equations, which allows us to apply known results from nonlinear functional analysis, namely a nonlinear version of Babuška–Brezzi theory and the classical Banach fixed-point theorem, to prove that the discrete scheme is well-posed and derive the corresponding a priori error estimates. Then we discuss some general aspects concerning the computational implementation of the method, which show a significant reduction of the size of the linear systems involved in the Newton iterations. Finally, we provide several numerical results illustrating the good performance of the proposed scheme and confirming the optimal order of convergence provided by the HDG approximation.
引用
收藏
页码:1270 / 1308
页数:38
相关论文
共 50 条
  • [1] Analysis of an Augmented HDG Method for a Class of Quasi-Newtonian Stokes Flows
    Gatica, Gabriel N.
    Sequeira, Filander A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 1270 - 1308
  • [2] A Priori and a Posteriori Error Analyses of an Augmented HDG Method for a Class of Quasi-Newtonian Stokes Flows
    Gatica, Gabriel N.
    Sequeira, Filander A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (03) : 1192 - 1250
  • [3] A Priori and a Posteriori Error Analyses of an Augmented HDG Method for a Class of Quasi-Newtonian Stokes Flows
    Gabriel N. Gatica
    Filánder A. Sequeira
    Journal of Scientific Computing, 2016, 69 : 1192 - 1250
  • [4] Analysis of the Staggered DG Method for the Quasi-Newtonian Stokes flows
    Liu, Jingyu
    Liu, Yang
    Zhao, Lina
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (01)
  • [5] The discrete duality finite volume method for a class of quasi-Newtonian Stokes flows
    He, Zhengkang
    Li, Rui
    Chen, Jie
    Chen, Zhangxin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (06) : 2193 - 2220
  • [6] An Artificial Boundary Condition for a Class of Quasi-Newtonian Stokes Flows
    Liu, Baoqing
    Chen, Qing
    Du, Qikui
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2014, 4 (01) : 35 - 51
  • [7] A MIXED VIRTUAL ELEMENT METHOD FOR QUASI-NEWTONIAN STOKES FLOWS
    Caceres, Ernesto
    Gatica, Gabriel N.
    Sequeira, Filander A.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 317 - 343
  • [8] MIXED DISCONTINUOUS GALERKIN METHOD FOR QUASI-NEWTONIAN STOKES FLOWS
    Qian, Yanxia
    Wang, Fei
    Yan, Wenjing
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (03): : 885 - 910
  • [9] A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows
    XiaoBo Zheng
    Gang Chen
    XiaoPing Xie
    Science China Mathematics, 2017, 60 : 1515 - 1528
  • [10] A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows
    ZHENG XiaoBo
    CHEN Gang
    XIE XiaoPing
    Science China(Mathematics), 2017, 60 (08) : 1515 - 1528