A Positivstellensatz for projective real varieties

被引:0
作者
Claus Scheiderer
机构
[1] Universität Konstanz,Fachbereich Mathematik und Statistik
来源
Manuscripta Mathematica | 2012年 / 138卷
关键词
Primary 14P05; secondary 14C20; 14N05; 13J30; 11E25;
D O I
暂无
中图分类号
学科分类号
摘要
Given two positive definite forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f,\,g\in\mathbb {R}[x_0,\ldots,x_n]}$$\end{document} , we prove that fgN is a sum of squares of forms for all sufficiently large N ≥ 0. We generalize this result to projective \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} -varieties X as follows. Suppose that X is reduced without one-dimensional irreducible components, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X(\mathbb {R})}$$\end{document} is Zariski dense in X. Given everywhere positive global sections f of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\otimes2}}$$\end{document} and g of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M^{\otimes2}}$$\end{document} , where L, M are invertible sheaves on X and M is ample, fgN is a sum of squares of sections of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L\otimes M^ {\otimes N}}$$\end{document} for all large N ≥ 0. In fact we prove a much more general version with semi-algebraic constraints, defined by sections of invertible sheaves. For nonsingular curves and surfaces and sufficiently regular constraints, the result remains true even if f is just nonnegative. The main tools are local-global principles for sums of squares, and on the other hand an existence theorem for totally real global sections of invertible sheaves, which is the second main result of this paper. For this theorem, X may be quasi-projective, but again should not have curve components. In fact, this result is false for curves in general.
引用
收藏
页码:73 / 88
页数:15
相关论文
共 9 条
  • [1] Monnier J.-Ph.(2003)Divisors on real curves Adv. Geom. 3 339-360
  • [2] Monnier J.-Ph.(2005)On real generalized Jacobian varieties J. Pure Appl. Algebra 203 252-274
  • [3] Reznick B.(1995)Uniform denominators in Hilbert’s seventeenth problem Math. Z. 220 75-97
  • [4] Roggero M.(1984)Sui sistemi lineari e il gruppo delle classi di divisori di una variet ‘a reale Ann. Math. Pura Appl. 135 349-362
  • [5] Scheiderer C.(1999)Sums of squares of regular functions on real algebraic varieties Trans. Am. Math. Soc. 352 1039-1069
  • [6] Scheiderer C.(2001)On sums of squares in local rings J. Reine Angew. Math. 540 205-227
  • [7] Scheiderer C.(2006)Sums of squares on real algebraic surfaces Manuscr. Math. 119 395-410
  • [8] Schmüdgen K.(1991)The Math. Ann. 289 203-206
  • [9] Stengle G.(1979)-moment problem for compact semi-algebraic sets Math. Ann. 246 33-39