Strategies and applications for predicting flow using neural networks: a review

被引:0
|
作者
Jiwon Kang
Heesoo Shin
Sangseung Lee
机构
[1] Inha University,Department of Mechanical Engineering
关键词
Artificial neural networks; Convolutional neural networks; Generative adversarial networks; Transfer learning; Active learning;
D O I
10.1007/s42791-024-00066-0
中图分类号
学科分类号
摘要
引用
收藏
页码:55 / 60
页数:5
相关论文
共 50 条
  • [11] Predicting glass transition temperatures using neural networks
    Cassar, Daniel R.
    de Carvalho, Andre C. P. L. F.
    Zanotto, Edgar D.
    ACTA MATERIALIA, 2018, 159 : 249 - 256
  • [12] Applications of artificial neural networks in energy systems - A review
    Kalogirou, SA
    ENERGY CONVERSION AND MANAGEMENT, 1999, 40 (10) : 1073 - 1087
  • [13] Hydrological flow rate estimation using artificial neural networks: Model development and potential applications
    Kostic, Srdan
    Stojkovic, Milan
    Prohaska, Stevan
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 291 : 373 - 385
  • [14] Predicting Renewable Curtailment in Distribution Grids Using Neural Networks
    Memmel, Elena
    Steens, Thomas
    Schlueters, Sunke
    Voelker, Rasmus
    Schuldt, Frank
    von Maydell, Karsten
    IEEE ACCESS, 2023, 11 : 20319 - 20336
  • [15] Using Artificial Neural Networks for Predicting Ship Fuel Consumption
    Nguyen, Van Giao
    Rajamohan, Sakthivel
    Rudzki, Krzysztof
    Kozak, Janusz
    Sharma, Prabhakar
    Pham, Nguyen Dang Khoa
    Nguyen, Phuoc Quy Phong
    Xuan, Phuong Nguyen
    POLISH MARITIME RESEARCH, 2023, 30 (02) : 39 - 60
  • [16] PREDICTING THERMAL CONDUCTIVITY OF STEELS USING ARTIFICIAL NEURAL NETWORKS
    Zmak, Irena
    Filetin, Tomislav
    TRANSACTIONS OF FAMENA, 2010, 34 (03) : 11 - 20
  • [17] Predicting the Next Process Event Using Convolutional Neural Networks
    Al-Jebrni, Abdulrhman
    Cai, Hongming
    Jiang, Lihong
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 332 - 338
  • [18] Predicting wood thermal conductivity using artificial neural networks
    Avramidis, S
    Iliadis, L
    WOOD AND FIBER SCIENCE, 2005, 37 (04): : 682 - 690
  • [19] Predicting Linearised Wind Resource Grids using Neural Networks
    Sheehan, Helen
    Traiger, Elizabeth
    Poole, Daniel
    Landberg, Lars
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2022, 229
  • [20] Predicting the effect of variants on splicing using Convolutional Neural Networks
    Thanapattheerakul, Thanyathorn
    Engchuan, Worrawat
    Chan, Jonathan H.
    PEERJ, 2020, 8