Integral representations of functions and embedding theorems for multianisotropic spaces on the plane with one anisotropy vertex

被引:0
作者
G. A. Karapetyan
机构
[1] Russian-Armenian (Slavonic) University,
来源
Journal of Contemporary Mathematical Analysis | 2016年 / 51卷
关键词
Integral representation; embedding theorem; Sobolev multianisotropic space;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain appropriate integral representations for functions from Sobolev multianisotropic spaces, and apply them to obtain embedding theorems for these spaces.
引用
收藏
页码:269 / 281
页数:12
相关论文
共 13 条
[1]  
Sobolev S. L.(1938)Sur un theoreme d’analyse fonctionnelle Mat. sb. 4 471-497
[2]  
Nikol’skii S. M.(1962)On a problem of S. L. Sobolev Sib. Mat. J. 3 845-857
[3]  
Smith K. T.(1961)Inequalities for formally positive integro-differential forms Bull. Amer. Math. 4 368-370
[4]  
Il’in V. P.(1967)Integral representations of differentiable functions and their applications to the questions of extension of functions of the classesWlp (G) Sib. Mat. J. 8 573-586
[5]  
Besov O. V.(1967)On coercivity in nonisotropic Sobolev spaces Mat. sb. 73 585-599
[6]  
Reshetnyak Yu. G.(1971)Some integral representations of differentiable functions Sib. Mat. J. 12 420-432
[7]  
Besov O. V.(1967)Continuation of functions from Ll p and Wlp Trudy Mat. Inst. Steklov 89 5-17
[8]  
Il’in V. P.(1970)Integral representations for functions of the classes Ll p(G) and embedding theorems Zap. Nauchn. Sem. LOMI 19 95-155
[9]  
Hörmander L.(1955)On the theory of general partial differential operators Acta. Math. 94 161-248
[10]  
Uspemskii S. V.(1975)On the exit to a polynomial of solutions of a class of pseudodifferential equations as |x| 8 Sib. Mat. J. 16 1053-1070