Integral Inequalities Associated with Gauss Hypergeometric Function Fractional Integral Operators

被引:0
作者
R. K. Saxena
S. D. Purohit
Dinesh Kumar
机构
[1] Jai Narayan Vyas University,Department of Mathematics and Statistics
[2] Rajasthan Technical University,Department of HEAS (Mathematics)
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2018年 / 88卷
关键词
Integral inequalities; Gauss hypergeometric function; Generalized fractional integral operators; 35A23; 26A33; 33C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some new integral inequalities related to the bounded functions, involving hypergepmetric fractional integral operators, are established. Special cases of the main results are also pointed out.
引用
收藏
页码:27 / 31
页数:4
相关论文
共 64 条
  • [1] Ahmadmir N(2011)Some inequalities of Ostrowski and Grüss type for triple integrals on time scales Tamkang J Math 42 415-426
  • [2] Ullah R(2002)New upper and lower bounds for the Chebyshev functional J Inequal Pure App Math 3 77-98
  • [3] Cerone P(1882)Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites Proc Math Soc Charkov 2 93-20
  • [4] Dragomir SS(1997)An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules Comput Math Appl 13 15-226
  • [5] Chebyshev PL(1935)Uber das maximum des absoluten Betrages von Math Z 39 215-82
  • [6] Dragomir SS(1999)A generalization of Grüss’s inequality in inner product spaces and applications J Math Anal Appl 237 74-415
  • [7] Wang S(2000)A Grüss type inequality for sequences of vectors in inner product spaces and applications J Inequal Pure Appl Math 1 12-300
  • [8] Grüss D(2000)Some integral inequalities of Grüss type Indian J Pure Appl Math 31 397-2010
  • [9] Dragomir SS(2004)Integral inequalities in Comput Math Appl 47 281-734
  • [10] Dragomir SS(2012)-calculus Comput Math Appl 64 2003-79