A nonlinear two-point boundary-value problem in geophysics

被引:0
作者
Kateryna Marynets
机构
[1] Uzhhorod National University,Department of Mathematics
来源
Monatshefte für Mathematik | 2019年 / 188卷
关键词
Nonlinear boundary-value problem; Ocean gyre; Second order differential equations; 34B15; 86A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study a recently derived model for gyres, equivalent to a a two-point boundary-value problem for ocean flows with no azimuthal variations. For a large class of oceanic vorticities we establish the existence of solutions using an approach based on the topological transversality theorem.
引用
收藏
页码:287 / 295
页数:8
相关论文
共 42 条
  • [1] Bailey P(1966)Existence and uniqueness of solutions of the first boundary value problem for non-linear second order differential equations Arch. Ration. Mech. Anal. 21 310-320
  • [2] Waltman P(1912)Sur les équations du calcul des variations Ann. Sci. École Norm. Sup. 29 431-485
  • [3] Bernstein SR(2017)On a differential equation arising in geophysics Monatsh. Math. 1179 C05029-328
  • [4] Chu J(2012)An exact solution for equatorially trapped waves J. Geophys. Res. Ocean. 193 318-789
  • [5] Constantin A(1995)On a two-point boundary value problem J. Math. Anal. Appl. 44 78-175
  • [6] Constantin A(2014)Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves J. Phys. Oceanogr. 43 165-358
  • [7] Constantin A(2013)Some three-dimensional nonlinear equatorial flows J. Phys. Oceanogr. 109 311-1945
  • [8] Constantin A(2015)The dynamics of waves interacting with the equatorial undercurrent Geophys. Astrophys. Fluid Dyn. 46 1935-3594
  • [9] Constantin A(2016)An exact, steady, purely azimuthal equatorial flow with a free surface J. Phys. Oceanogr. 46 3585-528
  • [10] Johnson RS(2016)An exact, steady, purely azimuthal flow as a model for the Antarctic circumpolar current J. Phys. Oceanogr. 473 20170063-262