Adaptive over-sampling method for classification with application to imbalanced datasets in aluminum electrolysis

被引:0
|
作者
Zhaoke Huang
Chunhua Yang
Xiaofang Chen
Keke Huang
Yongfang Xie
机构
[1] Central South University,School of Automation
来源
Neural Computing and Applications | 2020年 / 32卷
关键词
Class imbalance problem; Multi-objective optimization; State transition algorithm; SMOTE; Aluminum electrolysis;
D O I
暂无
中图分类号
学科分类号
摘要
The class imbalance problem often appears in practical applications, where one class has numerous instances and the other has only a few instances. Synthetic Minority Over-sampling TEchnique (SMOTE) is the most popular and commonly used sampling method to solve this problem. It has two important parameters: over-sampling rate N and number of nearest neighbors k. However, the two parameters that are arbitrarily chosen by users are not optimal in practical applications. In addition, the imbalance ratios of these datasets are absolutely different, which makes parameter selection in SMOTE more difficult. To overcome the problem, an adaptive over-sampling method is proposed in this study based on SMOTE. It transforms the parameter selection problem in SMOTE to a multi-objective optimization problem. Then, a new selection strategy named absolute dominance-based selection is proposed to obtain the current optimal solution. Finally, the state transition algorithm is used to search the best parameter values of SMOTE to achieve the optimal objectives. Four imbalanced benchmark datasets and four class-imbalanced aluminum electrolysis datasets are used to verify the validity of the proposed method. In comparison with other methods, the proposed method has the advantage of good classification performance. Numerical results also show that the proposed method can successfully solve the class imbalance problem in aluminum electrolysis.
引用
收藏
页码:7183 / 7199
页数:16
相关论文
共 50 条
  • [1] Adaptive over-sampling method for classification with application to imbalanced datasets in aluminum electrolysis
    Huang, Zhaoke
    Yang, Chunhua
    Chen, Xiaofang
    Huang, Keke
    Xie, Yongfang
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (11): : 7183 - 7199
  • [2] An Over-sampling Method Based on Probability Density Estimation for Imbalanced Datasets Classification
    Cao, Lu
    Zhai, Yi-Kui
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING (ICIIP'16), 2016,
  • [3] Multiple adaptive over-sampling for imbalanced data evidential classification
    Zhang, Zhen
    Tian, Hong -peng
    Jin, Jin-shuai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [4] An Effective Over-sampling Method for Imbalanced Data Sets Classification
    Zhai Yun
    Ma Nan
    Ruan Da
    An Bing
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (03): : 489 - 494
  • [5] Over-sampling imbalanced datasets using the covariance matrix
    Leguen-de Varona, Ireimis
    Madera, Julio
    Martínez-López, Yoan
    Hernández-Nieto, José Carlos
    EAI Endorsed Transactions on Energy Web, 2020, 7 (27) : 1 - 6
  • [6] A self-adaptive synthetic over-sampling technique for imbalanced classification
    Gu, Xiaowei
    Angelov, Plamen P.
    Soares, Eduardo A.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2020, 35 (06) : 923 - 943
  • [7] Over-sampling algorithm for imbalanced data classification
    Xu Xiaolong
    Chen Wen
    Sun Yanfei
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2019, 30 (06) : 1182 - 1191
  • [8] Margin-Based Over-Sampling Method for Learning from Imbalanced Datasets
    Fan, Xiannian
    Tang, Ke
    Weise, Thomas
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011, 2011, 6635 : 309 - 320
  • [9] Imbalanced Node Classification With Synthetic Over-Sampling
    Zhao, Tianxiang
    Zhang, Xiang
    Wang, Suhang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8515 - 8528
  • [10] Over-sampling algorithm for imbalanced data classification
    XU Xiaolong
    CHEN Wen
    SUN Yanfei
    JournalofSystemsEngineeringandElectronics, 2019, 30 (06) : 1182 - 1191