Aron–Berner extensions of almost Dunford–Pettis multilinear operators

被引:0
作者
Geraldo Botelho
Luis Alberto Garcia
机构
[1] Universidade Federal de Uberlândia,Faculdade de Matemática
[2] Universidade de São Paulo,Instituto de Matemática e Estatística
来源
Monatshefte für Mathematik | 2024年 / 203卷
关键词
Banach lattices; Aron–Berner extension; Almost Dunford–Pettis multilinear operators; Separately almost Dunford–Pettis operators; 46B42; 46G25; 47B65; 47H60;
D O I
暂无
中图分类号
学科分类号
摘要
We study when Aron–Berner extensions of (separately) almost Dunford–Pettis multilinear operators between Banach lattices are (separately) almost Dunford–Pettis. For instance, for a σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-Dedekind complete Banach lattice F containing a copy of ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document}, we characterize the Banach lattices E1,…,Em\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1, \ldots , E_m$$\end{document} for which every continuous m-linear operator from E1×⋯×Em\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1 \times \cdots \times E_m$$\end{document} to F admits an almost Dunford–Pettis Aron–Berner extension. Illustrative examples are provided.
引用
收藏
页码:563 / 581
页数:18
相关论文
共 45 条
[1]  
Aqzzouz B(2011)Some characterizations of almost Dunford–Pettis operators and applications Positivity 15 369-380
[2]  
Elbour A(2011)Positive almost Dunford–Pettis operators and their duality Positivity 15 185-197
[3]  
Aqzzouz B(1998)Multilinear operators on spaces of continuous functions Funct. et Approx. Comment. Math. 25 117-126
[4]  
Elbour A(2022)The positive Schur property on positive projective tensor products and spaces of regular multilinear operators Monatsh. Math. 197 565-578
[5]  
Wickstead AW(2023)Bidual extensions of Riesz multimorphisms J. Math. Anal. Appl. 520 126869, 18-642
[6]  
Bombal F(2021)On the Schur, positive Schur and weak Dunford-Pettis properties in Fréchet lattices Ann. Fenn. Math. 46 633-414
[7]  
Villanueva I(2005)On some properties of bilinear maps of order bounded variation Positivity 9 401-242
[8]  
Botelho G(2021)Synnatzschke’s theorem for polynomials Positivity 25 229-334
[9]  
Bu Q(2000)Extension of multilinear operators on Banach spaces Extracta Math. 15 291-2457
[10]  
Ji D(2020)The algebra of bounded-type holomorphic functions on the ball Proc. Am. Math. Soc. 148 2447-687