Automated segmentation of whole-body CT images for body composition analysis in pediatric patients using a deep neural network

被引:0
|
作者
Seul Bi Lee
Yeon Jin Cho
Soon Ho Yoon
Yun Young Lee
Soo-Hyun Kim
Seunghyun Lee
Young Hun Choi
Jung-Eun Cheon
机构
[1] Seoul National University Hospital,Department of Radiology
[2] Seoul National University College of Medicine,Department of Radiology
[3] MEDICALIP Co. Ltd.,Department of Radiology
[4] Chonnam National University Hospital,Institute of Radiation Medicine
[5] Seoul National University Medical Research Center,undefined
来源
European Radiology | 2022年 / 32卷
关键词
Deep learning; Artificial intelligence; Body composition; Tomography; Child;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:8463 / 8472
页数:9
相关论文
共 50 条
  • [31] Deep learning–based fully automated body composition analysis of thigh CT: comparison with DXA measurement
    Hye Jin Yoo
    Young Jae Kim
    Hyunsook Hong
    Sung Hwan Hong
    Hee Dong Chae
    Ja-Young Choi
    European Radiology, 2022, 32 : 7601 - 7611
  • [32] Deep Semisupervised Transfer Learning for Fully Automated Whole-Body Tumor Quantification and Prognosis of Cancer on PET/CT
    Leung, Kevin H.
    Rowe, Steven P.
    Sadaghiani, Moe S.
    Leal, Jeffrey P.
    Mena, Esther
    Choyke, Peter L.
    Du, Yong
    Pomper, Martin G.
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65 (04) : 643 - 650
  • [33] A convolutional neural network-based system for fully automatic segmentation of whole-body [68Ga]Ga-PSMA PET images in prostate cancer
    Jafari, Esmail
    Zarei, Amin
    Dadgar, Habibollah
    Keshavarz, Ahmad
    Manafi-Farid, Reyhaneh
    Rostami, Habib
    Assadi, Majid
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 (05) : 1476 - 1487
  • [34] Automated Volumetric Lung Segmentation of Thoracic CT Images using Fully Convolutional Neural Network
    Negahdar, Mohammadreza
    Beymer, David
    Syeda-Mahmood, Tanveer
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [35] Whole-body Composition Profiling Using a Deep Learning Algorithm Influence of Different Acquisition Parameters on Algorithm Performance and Robustness
    Huber, Florian A.
    Chaitanya, Krishna
    Gross, Nico
    Chinnareddy, Sunand Reddy
    Gross, Felix
    Konukoglu, Ender
    Guggenberger, Roman
    INVESTIGATIVE RADIOLOGY, 2022, 57 (01) : 33 - 43
  • [36] Comparative analysis of intestinal tumor segmentation in PET CT scans using organ based and whole body deep learning
    Torkaman, Mahsa
    Jemaa, Skander
    Fredrickson, Jill
    Coimbra, Alexandre Fernandez
    De Crespigny, Alex
    Carano, Richard A. D.
    BMC MEDICAL IMAGING, 2025, 25 (01):
  • [37] Deep learning-based fully automated body composition analysis of thigh CT: comparison with DXA measurement
    Yoo, Hye Jin
    Kim, Young Jae
    Hong, Hyunsook
    Hong, Sung Hwan
    Chae, Hee Dong
    Choi, Ja-Young
    EUROPEAN RADIOLOGY, 2022, 32 (11) : 7601 - 7611
  • [38] Deep Neural Network Regression for Automated Retinal Layer Segmentation in Optical Coherence Tomography Images
    Ngo, Lua
    Cha, Jaepyeong
    Han, Jae-Ho
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 303 - 312
  • [39] Automated Lung Segmentation on Chest Computed Tomography Images with Extensive Lung Parenchymal Abnormalities Using a Deep Neural Network
    Yoo, Seung-Jin
    Yoon, Soon Ho
    Lee, Jong Hyuk
    Kim, Ki Hwan
    Choi, Hyoung In
    Park, Sang Joon
    Goo, Jin Mo
    KOREAN JOURNAL OF RADIOLOGY, 2021, 22 (03) : 476 - 488
  • [40] Estimating 3-D whole-body composition from a chest CT scan
    Pu, Lucy
    Ashraf, Syed F.
    Gezer, Naciye S.
    Ocak, Iclal
    Dresser, Daniel E.
    Leader, Joseph K.
    Dhupar, Rajeev
    MEDICAL PHYSICS, 2022, 49 (11) : 7108 - 7117