Approximate Hermitian–Yang–Mills structures on semistable principal Higgs bundles

被引:1
作者
Ugo Bruzzo
Beatriz Graña Otero
机构
[1] Scuola Internazionale Superiore di Studi Avanzati,Sezione di Trieste
[2] Istituto Nazionale di Fisica Nucleare,Departamento de Matemáticas
[3] Pontificia Universidad Javeriana,undefined
来源
Annals of Global Analysis and Geometry | 2015年 / 47卷
关键词
Principal (Higgs) bundles; Semistability; Approximate Hermitian–Yang–Mills structures; Hermitian–Yang–Mills metrics; 53C07; 32L05; 14F05;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the Hitchin–Kobayashi correspondence between semistability and the existence of approximate Hermitian–Yang–Mills structures to the case of principal Higgs bundles. We prove that a principal Higgs bundle E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {E}}$$\end{document} on a compact Kähler manifold, with structure group a connected linear algebraic reductive group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, is semistable if and only if it admits an approximate Hermitian–Yang–Mills structure.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 26 条
  • [1] Anchouche B(2001)Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold Am. J. Math. 123 207-228
  • [2] Biswas I(1957)Complex analytic connections in fibre bundles Trans. Am. Math. Soc. 85 181-207
  • [3] Atiyah MF(2014)Automorphisms and connections on Higgs bundles over compact Kähler manifolds Differ. Geom. Appl. 32 139-152
  • [4] Biswas I(2012)Existence of approximate Hermitian-Einstein structures on semistable principal bundles Bull. Sci. Math. 136 745-751
  • [5] Bradlow SB(2009)Yang-Mills equations for stable Higgs sheaves Int. J. Math. 5 541-556
  • [6] Jacob A(2012)Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. I: generalities and the one-dimensional case Ann. Global Anal. Geom. 42 349-370
  • [7] Stemmler M(2013)Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles II: Higgs sheaves and admissible structures Ann. Global Anal. Geom. 44 455-469
  • [8] Biswas I(1985)Anti-self-dual Yang-Mills connections on complex algebraic surfaces and stable vector bundles Proc. Lond. Math. Soc. 3 1-26
  • [9] Jacob A(1987)Infinite determinants, stable bundles and curvature Duke Math. J. 54 231-247
  • [10] Stemmler M(1983)Stability of Einsten-Hermitian vector bundles Manuscr. Math. 42 245-257