Optimality conditions in extremal problems with nonregular inequality constraints

被引:0
作者
A. F. Izmailov
机构
[1] Computer Center of the Russian Academy of Sciences,
来源
Mathematical Notes | 1999年 / 66卷
关键词
extremal problem; inequality constraint; nonregular constraint; tangent cone; dual cone; 2-regularity; second-order optimality conditions; topological linear space;
D O I
暂无
中图分类号
学科分类号
摘要
We suggest an informative characterization of local solutions for extremal problems with constraints specified by a convex cone with nonempty interior. The constraints are not assumed to be regular. Our construction is based on a description of the tangent cone to the feasible set at a given point.
引用
收藏
页码:72 / 81
页数:9
相关论文
共 6 条
[1]  
Tret'yakov A. A.(1984)th-order necessary and sufficient optimality conditions Zhurn. Vychisl. Matem. i Matem. Fiz. 24 203-209
[2]  
Avakov E. R.(1985)Extremum conditions for smooth problems with equality constraints Zhurn. Vychisl. Matem. i Matem. Fiz. 25 680-693
[3]  
Belash K. N.(1988)Methods for solving degenerate problems Zhurn. Vychisl. Matem. i Matem. Fiz. 28 1097-1102
[4]  
Tret'yakov A. A.(1989)Necessary extremum conditions for smooth abnormal problems with equality and inequality constraints Matem. Zametki 45 3-11
[5]  
Avakov E. R.(1994)Optimality condition for degenerate extremal problems with inequality constraints Zhurn. Vychisl. Matem. i Matem. Fiz. 34 837-854
[6]  
Izmailov A. F.(undefined)undefined undefined undefined undefined-undefined