Holomorphic Extensions in Smooth Toric Surfaces

被引:0
作者
Małgorzata Aneta Marciniak
机构
来源
Journal of Geometric Analysis | 2012年 / 22卷
关键词
Hartogs phenomenon; Toric variety; Holomorphic extension; 32D15; 32A10; 54D35;
D O I
暂无
中图分类号
学科分类号
摘要
This article describes the Hartogs and the Hartogs–Bochner extension phenomena in smooth toric surfaces and the connection with the first cohomology group with compact support. The affirmative and negative results are proved using topological, analytic, and algebraic methods.
引用
收藏
页码:911 / 933
页数:22
相关论文
共 13 条
  • [1] Dolbeault P.(1953)Sur la cohomologie des variétés analytiques complexes C. R. Acad. Sci. Paris 236 175-177
  • [2] Dwilewicz R.(2006)Additive Riemann-Hilbert problem in line bundles over Can. Math. Bull. 49 72-81
  • [3] Dwilewicz R.(2006)Holomorphic extensions in complex fiber bundles J. Math. Anal. Appl. 322 556-565
  • [4] Dwilewicz R.(2007)An analytic point of view at toric varieties Serdica Math. J. 33 163-240
  • [5] Dwilewicz R.(2002)On the Hartogs–Bochner phenomenon for CR functions in Proc. Am. Math. Soc. 130 1975-1980
  • [6] Merker J.(1961)A new proof and an extension of Hartogs theorem Bull. Am. Math. Soc. 67 507-509
  • [7] Ehrenpreis L.(1931)Über die Enden topologischer Räume und Gruppen Math. Z. 33 692-713
  • [8] Freudenthal H.(1906)Zur Theorie der analytischen Functionen mehrener unabhangiger Veränderlichen insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten Math. Ann. 62 1-88
  • [9] Hartogs F.(1943)Enden offener Räume unendliche diskontinuierliche Gruppen Comment. Math. Helv. 16 81-100
  • [10] Hopf H.(1965)On the extension of holomorphic functions from the boundary of a complex manifold Ann. Math. 81 451-472