Electron-beam-induced conductivity in self-organized silicon quantum wells

被引:0
作者
A. N. Andronov
S. V. Robozerov
N. T. Bagraev
L. E. Klyachkin
A. M. Malyarenko
机构
[1] St. Petersburg State Technical University,A. F. Ioffe Physicotechnical Institute
[2] Russian Academy of Sciences,undefined
来源
Semiconductors | 1999年 / 33卷
关键词
Silicon; Boron; Magnetic Material; Electromagnetism; Energy Dependence;
D O I
暂无
中图分类号
学科分类号
摘要
Electron-beam diagnostics are used to study self-organized quantum wells which form within ultrashallow silicon p+-n junctions under the conditions of nonequilibrium boron diffusion. The energy dependence and current-voltage characteristics of the electron-beam-induced conductivity are investigated with relative dominance of both longitudinal and transverse quantum wells, which are oriented parallel and perpendicularly to the p-n junction plane, respectively. Current-voltage characteristics of the electron-beam-induced conductivity are exhibited for the first time with both reverse and forward biasing of the silicon p+-n junction. This became possible because of the presence of self-organized transverse quantum wells within the ultrashallow p+ diffusion profile, while self-organized longitudinal quantum wells promote the appearance of electron-beam-induced conductivity only when the p+-n junction is reverse-biased. The distribution of the probability for the separation of electron-hole pairs across the thickness of the crystal derived from the energy dependences of the electron-beam-induced conductivity reveals effects of the avalanche multiplication of the nonequilibrium carriers as a result of the spatial separation of electrons and holes in the field of a p+-n junction that contains self-organized transverse quantum wells.
引用
收藏
页码:782 / 787
页数:5
相关论文
共 50 条
[31]   Numerical simulation of electron-beam-induced current near a silicon grain boundary and impact of a p-n junction space charge region [J].
Corkish, R ;
Altermatt, PP ;
Heiser, G .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 65 (1-4) :63-69
[32]   Self-organized Artificial SEI for Improving the Cycling Ability of Silicon-based Battery Anode Materials [J].
Min, Jeong-Hye ;
Bae, Young-San ;
Kim, Joong-Yeon ;
Kim, Sung-Soo ;
Song, Seung-Wan .
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2013, 34 (04) :1296-1299
[33]   Characterization of leakage behaviors of high-k gate stacks by Electron-Beam-Induced Current [J].
Chen, J. ;
Sekiguchi, T. ;
Fukata, N. ;
Takase, M. ;
Chikyow, T. ;
Yamabe, K. ;
Hasumuma, R. ;
Sato, M. ;
Nara, Y. ;
Yamada, K. .
2008 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM PROCEEDINGS - 46TH ANNUAL, 2008, :584-+
[34]   Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin [J].
Nayak, Barada K. ;
Gupta, Mool C. .
OPTICS AND LASERS IN ENGINEERING, 2010, 48 (10) :966-973
[35]   Self-organized fractal-like structures formation on the silicon wafer surface using the femtosecond laser pulses [J].
Goodarzi, R. ;
Hajiesmaeilbaigi, F. ;
Bostandoost, E. .
OPTICS AND LASERS IN ENGINEERING, 2020, 128
[36]   Photocurrent in self-organized InAs quantum dots in 1.3 μm InAs/InGaAs/GaAs semiconductor laser heterostructures [J].
A. V. Savel’ev ;
M. V. Maksimov ;
V. M. Ustinov ;
R. P. Seĭsyan .
Semiconductors, 2006, 40 :84-88
[37]   Electrical Characterisation of electron beam exposure induced Defects in silicon [J].
Danga, Helga T. ;
Auret, Francois D. ;
Coelho, Sergio M. M. ;
Diale, Mmantsae .
PHYSICA B-CONDENSED MATTER, 2016, 480 :206-208
[38]   Electron-beam-induced deposition of carbon films on Si(100) using chemisorbed ethylene as a precursor molecule [J].
Guise, O ;
Marbach, H ;
Levy, J ;
Ahner, J ;
Yates, JT .
SURFACE SCIENCE, 2004, 571 (1-3) :128-138
[39]   Electron Beam Induced Current Investigations on Silicon Contaminated with Copper [J].
Ihlal, A. ;
Bouabid, K. ;
Portier, X. ;
Nouet, G. ;
Rizk, R. .
JOURNAL OF ACTIVE AND PASSIVE ELECTRONIC DEVICES, 2008, 3 (3-4) :185-191
[40]   Capacitance-voltage profiling of Au/n-GaAs Schottky barrier structures containing a layer of self-organized InAs quantum dots [J].
P. N. Brunkov ;
A. A. Suvorova ;
N. A. Bert ;
A. R. Kovsh ;
A. E. Zhukov ;
A. Yu. Egorov ;
V. M. Ustinov ;
A. F. Tsatsul’nikov ;
N. N. Ledentsov ;
P. S. Kop’ev ;
S. G. Konnikov ;
L. Eaves ;
P. S. Main .
Semiconductors, 1998, 32 :1096-1100