Normality and Uniqueness Property of Meromorphic Function in Terms of Some Differential Polynomials

被引:0
|
作者
Nguyen Viet Phuong
机构
[1] Thai Nguyen University of Economics and Business Administration,
来源
Vietnam Journal of Mathematics | 2021年 / 49卷
关键词
Meromorphic functions; Nevanlinna theory; Uniqueness; Sharing value; Normal families; Differential polynomial; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will consider normality and uniqueness property of a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {F}$\end{document} of meromorphic functions when [Q(f)](k) and [Q(g)](k) share α ignoring multiplicities, for any f,g∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f,g\in \mathcal {F}$\end{document}, where Q is a polynomial and α is a small function. Our results do not need all of zeros of Q have large order as other authors’ results.
引用
收藏
页码:1317 / 1332
页数:15
相关论文
共 50 条