Hamiltonian F-Stability of Complete Lagrangian Self-Shrinkers

被引:0
|
作者
Liuqing Yang
机构
[1] Peking University,Beijing International Center for Mathematical Research
来源
The Journal of Geometric Analysis | 2016年 / 26卷
关键词
Hamiltonian F-stable; Lagrangian F-stable; Lagrangian self-shrinker; Primary 53C44; Secondary 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Lagrangian F-stability and Hamiltonian F-stability of Lagrangian self-shrinkers. We prove a characterization theorem for the Hamiltonian F-stability of n-dimensional complete Lagrangian self-shrinkers without boundary, with polynomial volume growth and with the second fundamental form satisfying the condition that there exist constants C0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0>0$$\end{document} and ε<116n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon <\frac{1}{16n}$$\end{document} such that |A|2≤C0+ε|x|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|A|^2\le C_0+\varepsilon |x|^2$$\end{document}. We characterize the Hamiltonian F-stability by the eigenvalues and eigenspaces of the drifted Laplacian.
引用
收藏
页码:2040 / 2066
页数:26
相关论文
共 50 条
  • [1] Hamiltonian F-Stability of Complete Lagrangian Self-Shrinkers
    Yang, Liuqing
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (03) : 2040 - 2066
  • [2] Lagrangian F-stability of closed Lagrangian self-shrinkers
    Li, Jiayu
    Zhang, Yongbing
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 733 : 1 - 23
  • [3] The Rigidity Theorem for Complete Lagrangian Self-Shrinkers
    Li, Zhi
    Wang, Ruixin
    Wei, Guoxin
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [4] Complete Lagrangian self-shrinkers in R4
    Cheng, Qing-Ming
    Hori, Hiroaki
    Wei, Guoxin
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3417 - 3468
  • [5] The rigidity theorems for Lagrangian self-shrinkers
    Ding, Qi
    Xin, Yuanlong
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 692 : 109 - 123
  • [6] THE SECOND GAP ON COMPLETE SELF-SHRINKERS
    Cheng, Qing-Ming
    Wei, Guoxin
    Yano, Wataru
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 339 - 348
  • [7] Complete self-shrinkers of the mean curvature flow
    Cheng, Qing-Ming
    Peng, Yejuan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) : 497 - 506
  • [8] Complete self-shrinkers of the mean curvature flow
    Qing-Ming Cheng
    Yejuan Peng
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 497 - 506
  • [9] IMMERSED SELF-SHRINKERS
    Drugan, Gregory
    Kleene, Stephen J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (10) : 7213 - 7250
  • [10] Complete self-shrinkers confined into some regions of the space
    Stefano Pigola
    Michele Rimoldi
    Annals of Global Analysis and Geometry, 2014, 45 : 47 - 65