The existence and concentration of ground-state solutions for a class of Kirchhoff type problems in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{R}^{3}}$\end{document} involving critical Sobolev exponents

被引:0
作者
Chaoquan Peng
机构
[1] Central China Normal University,School of Mathematics and Statistics
关键词
existence; concentration; Kirchhoff type equation; critical growth; 35J20; 35J60; 35J92;
D O I
10.1186/s13661-017-0793-x
中图分类号
学科分类号
摘要
We are concerned with ground-state solutions for the following Kirchhoff type equation with critical nonlinearity: {−(ε2a+εb∫R3|∇u|2)Δu+V(x)u=λW(x)|u|p−2u+|u|4uin R3,u>0,u∈H1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textstyle\begin{cases} - ({\varepsilon^{2}}a + \varepsilon b\int_{{\mathbb{R}^{3}}} {{{ \vert {\nabla u} \vert }^{2}}} )\Delta u + V(x)u = \lambda W(x){ \vert u \vert ^{p - 2}}u + { \vert u \vert ^{4}}u\quad {\text{in }}{\mathbb{R}^{3}} ,\\ u > 0, \quad\quad u \in{H^{1}}({\mathbb{R}^{3}}) , \end{cases} $$\end{document} where ε is a small positive parameter, a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda > 0$\end{document}, 2<p≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2 < p \le4$\end{document}, V and W are two potentials. Under proper assumptions, we prove that, for ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon > 0$\end{document} sufficiently small, the above problem has a positive ground-state solution uε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${u_{\varepsilon}}$\end{document} by using a monotonicity trick and a new version of global compactness lemma. Moreover, we use another global compactness method due to Gui (Commun. Partial Differ. Equ. 21:787-820, 1996) to show that uε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${u_{\varepsilon}}$\end{document} is concentrated around a set which is related to the set where the potential V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document} attains its global minima or the set where the potential W(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W(x)$\end{document} attains its global maxima as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon \to0$\end{document}.
引用
收藏
相关论文
共 47 条
[21]  
He X(2015)Standing waves for a class of Kirchhoff type problems in Calc. Var. Partial Differ. Equ. 54 3067-3106
[22]  
Li Y(1983) involving critical Sobolev exponents Proc. Am. Math. Soc. 88 486-490
[23]  
Li F(1984)A relation between pointwise convergence of functions and convergence of functionals Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2 223-283
[24]  
Shi J(1985)The concentration-compactness principle in the calculus of variations, the locally compact case, part 2 Rev. Mat. Iberoam. 1 145-201
[25]  
Berestycki H(undefined)The concentration-compactness principle in the calculus of variations, the limit case, part 1 undefined undefined undefined-undefined
[26]  
Lions PL(undefined)undefined undefined undefined undefined-undefined
[27]  
Berestycki H(undefined)undefined undefined undefined undefined-undefined
[28]  
Lions PL(undefined)undefined undefined undefined undefined-undefined
[29]  
Rabinowitz P(undefined)undefined undefined undefined undefined-undefined
[30]  
Wang X(undefined)undefined undefined undefined undefined-undefined