Coadjoint Orbits of Central Extensions of Gauge Groups

被引:0
作者
Jean-Luc Brylinski
机构
[1] Department of Mathematics,
[2] Pennsylvania State University,undefined
[3] University Park,undefined
[4] PA 16802,undefined
[5] USA. ¶E-mail: jlb@math.psu.edu,undefined
来源
Communications in Mathematical Physics | 1997年 / 188卷
关键词
Manifold; Gauge Group; Tensor Product; Large Class; Central Extension;
D O I
暂无
中图分类号
学科分类号
摘要
We study geometrically the coadjoint orbits of the central extensions of gauge groups over arbitrary manifolds. We show that these orbits are classified by a dimension one foliation with a transverse measure, together with a leafwise connection. For the case of a two-dimensional torus with standard trivial foliation, we show that the holonomies along the leaves give a complete invariant for the regular coadjoint orbits. We investigate in detail the Kronecker foliation of a torus using a new construction which we call asymptotic holonomy.
引用
收藏
页码:351 / 365
页数:14
相关论文
empty
未找到相关数据