Petersson scalar products and L-functions arising from modular forms

被引:0
作者
Shigeaki Tsuyumine
机构
[1] Mie University,Faculty of Education, Department of Mathematics
来源
The Ramanujan Journal | 2020年 / 52卷
关键词
L-function; Modular form; Petersson scalar product; 11F67; 11F11; 11F37;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(z)=∑n=0∞ane(nz),g(z)=∑n=0∞bne(nz)(e(z)=e2π-1z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=\sum _{n=0}^{\infty }a_{n}{\mathbf {e}}(nz),g(z)=\sum _{n=0}^{\infty }b_{n}{\mathbf {e}}(nz)\ ({\mathbf {e}}(z)=e^{2\pi \sqrt{-1}z})$$\end{document} be holomorphic modular forms for Γ0(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{0}(N)$$\end{document} of integral weight or half integral weight, where their weights or characters are not necessarily equal to each other. We show that L(s;f,g):=∑n=1∞anb¯nn-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s;f,g):=\sum _{n=1}^{\infty }a_{n}{\overline{b}}_{n}n^{-s}$$\end{document} extends meromorphically to the whole s plane, and that it satisfies some functional equation. Some residues of the L-function or some special values are expressed in terms of the Petersson scalar product. Applications to quadratic forms are included.
引用
收藏
页码:1 / 40
页数:39
相关论文
共 18 条
[1]  
Borwein JM(2003)On Dirichlet Series for sums of squares Ramanujan J. 7 97-130
[2]  
Choi SKK(2007)On Petersson products of not necessarily cuspidal modular forms J. Number Theory 122 13-24
[3]  
Chiera FL(2005)On sums of three squares Int. J. Number Theory 1 161-173
[4]  
Choi SKK(1997)On the Rankin-Selberg method for functions not of rapid decay on congruence subgroups J. Number Theory 62 115-126
[5]  
Kumchev AV(2005)The Rankin-Selberg convolution for Cohen’s Eisenstein Series of half integral weight Abh. Math. Sem. Univ. Hambg. 75 1-20
[6]  
Osburn R(1995)The Rankin-Selberg method for non-holomorphic automorphic forms J. Number Theory 51 48-86
[7]  
Gupta SD(2014)On On the Petersson product of arbitrary modular forms Proc. Am. Math. Soc. 142 753-760
[8]  
Mizuno Y(2013)Modular forms and period polynomials Proc. Lond. Math Soc. 107 713-743
[9]  
Müller W(1949)Über die Berechnung der Skalarprodkte ganzer Modulformen Comment. Math. Helv. 22 168-199
[10]  
Pasol V(1982)Eisenstein series of weight 3/2, I Trans. Am. Math. Soc. 274 573-606