Topological \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document} -classification of finitely determined map germs

被引:0
作者
João Carlos Ferreira Costa
Juan J. Nuño-Ballesteros
机构
[1] IBILCE-UNESP,Departamento de Matemática
[2] Universitat de València,Departament de Geometria i Topologia
关键词
Topological ; -equivalence; Classification; Link; Diagram link; 58K15; 58K65; 58K40;
D O I
10.1007/s10711-012-9789-y
中图分类号
学科分类号
摘要
We consider smooth finitely C0-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document} -determined map germs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)}$$\end{document} and we look at the classification under C0-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document} -equivalence. The main tool is the homotopy type of the link, which is obtained by intersecting the image of f with a small enough sphere centered at the origin. When f−1(0) = {0}, the link is a smooth map between spheres and f is C0-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document} -equivalent to the cone of its link. When f−1(0) ≠ {0}, we consider a link diagram, which contains some extra information, but again f is C0-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document} -equivalent to the generalized cone. As a consequence, we deduce some known results due to Nishimura (for n = p) or the first named author (for n < p). We also prove some new results of the same nature.
引用
收藏
页码:147 / 162
页数:15
相关论文
共 50 条