Strong extensions for q-summing operators acting in p-convex Banach function spaces for 1≤p≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p \le q$$\end{document}

被引:0
作者
O. Delgado
E. A. Sánchez Pérez
机构
[1] Universidad de Sevilla,Departamento de Matemática Aplicada I, E. T. S. de Ingeniería de Edificación
[2] Universitat Politècnica de València,Instituto Universitario de Matemática Pura y Aplicada
关键词
Operator; Extension; Factorization; -convex; -summing; 46E30; 47B38; 46B42;
D O I
10.1007/s11117-016-0397-1
中图分类号
学科分类号
摘要
Let 1≤p≤q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p\le q<\infty $$\end{document} and let X be a p-convex Banach function space over a σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. We combine the structure of the spaces Lp(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mu )$$\end{document} and Lq(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q(\xi )$$\end{document} for constructing the new space SXpq(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{X_p}^{\,q}(\xi )$$\end{document}, where ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} is a probability Radon measure on a certain compact set associated to X. We show some of its properties, and the relevant fact that every q-summing operator T defined on X can be continuously (strongly) extended to SXpq(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{X_p}^{\,q}(\xi )$$\end{document}. Our arguments lead to a mixture of the Pietsch and Maurey-Rosenthal factorization theorems, which provided the known (strong) factorizations for q-summing operators through Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-spaces when 1≤q≤p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le q \le p$$\end{document}. Thus, our result completes the picture, showing what happens in the complementary case 1≤p≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p\le q$$\end{document}.
引用
收藏
页码:999 / 1014
页数:15
相关论文
共 12 条
[1]  
Calabuig JM(2010)Factorizing operators on Banach function spaces through spaces of multiplication operators J. Math. Anal. Appl. 364 88-103
[2]  
Delgado O(2013)Strongly embedded subspaces of Positivity 17 775-791
[3]  
Sánchez Pérez EA(2001)-convex Banach function spaces Positivity 5 153-175
[4]  
Calabuig JM(2004)Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces J. Math. Anal. Appl. 297 771-790
[5]  
Rodríguez J(2010)Maurey-Rosenthal factorization of positive operators and convexity Integr. Equ. Oper. Theory 66 197-214
[6]  
Sánchez-Pérez EA(2014)Summability properties for multiplication operators on Banach function spaces Integr. Equ. Oper. Theory 80 117-135
[7]  
Defant A(undefined)Factorization theorems for multiplication operators on Banach function spaces undefined undefined undefined-undefined
[8]  
Defant A(undefined)undefined undefined undefined undefined-undefined
[9]  
Sánchez Pérez EA(undefined)undefined undefined undefined undefined-undefined
[10]  
Delgado O(undefined)undefined undefined undefined undefined-undefined