Hyers–Ulam Stability of General Jensen-Type Mappings in Banach Algebras

被引:0
作者
Gang Lu
Choonkil Park
机构
[1] ShenYang University of Technology,Department of Mathematics, School of Science
[2] Hanyang University,Department of Mathematics, Research Institute for Natural Sciences
来源
Results in Mathematics | 2014年 / 66卷
关键词
Primary 39B62; 39B52; 46B25; Jensen-type mapping; Hyers–Ulam stability; homomorphism; derivation; complex Banach algebra; complex Banach lie algebra; hyperstability;
D O I
暂无
中图分类号
学科分类号
摘要
Using the fixed point method, we prove the Hyers–Ulam stability of homomorphisms in complex Banach algebras and complex Banach Lie algebras and also of derivations on complex Banach algebras and complex Banach Lie algebras for the general Jensen-type functional equation f(αx + βy) + f(αx − βy) = 2αf(x) for any α,β∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha, \beta \in \mathbb{R}}$$\end{document} with α,β≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha, \beta \neq 0}$$\end{document}. Furthermore, we prove the hyperstability of homomorphisms in complex Banach algebras for the above functional equation with α = β = 1.
引用
收藏
页码:385 / 404
页数:19
相关论文
共 29 条
[1]  
Aoki T.(1950)On the stability of the linear transformation in Banach spaces J. Math. Soc. Japan 2 64-66
[2]  
Brzdȩk J.(2011)A fixed point approach to stability of functional equations Nonlinear Anal. TMA 74 6728-6732
[3]  
Chudziak J.(2013)Remarks on the stability of Lie homomorphisms J. Math. Anal. Appl. 400 585-596
[4]  
Páles Zs.(2014)Hyperstability of the Jensen functional equation Acta Math. Hungar. 142 353-365
[5]  
Brzdȩk J.(2013)Hyperstability of the Cauchy equation on restricted domains Acta Math. Hungar. 141 58-67
[6]  
Fos̆ner A.(2012)Applications of fixed point theorems to the Hyers–Ulam stability of functional equations—a survey Ann. Funct. Anal. 3 151-164
[7]  
Bahyrycz A.(2013)Nearly quartic mappings in Results Math. 63 529-541
[8]  
Piszczek M.(1968)-homogeneous Bull. Am. Math. Soc. 44 305-309
[9]  
Brzdek J.(1994)-spaces J. Math. Anal. Appl. 184 431-436
[10]  
Ciepliński K.(1941)A fixed point theorem of the alternative, for contractions on a generalized complete metric space Proc. Natl. Acad. Sci. USA 27 222-224