Regularizing effect of the interplay between coefficients in some nonlinear Dirichlet problems with distributional data

被引:0
作者
David Arcoya
Lucio Boccardo
Luigi Orsina
机构
[1] Universidad de Granada,Departamento de Análisis Matemático
[2] “Sapienza” Università di Roma,Dipartimento di Matematica
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2020年 / 199卷
关键词
Nonlinear elliptic equations; Regularizing effect; Interplay between coefficients; 35J60; 35B51; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the solution u of Dirichlet problem (1.1) has exponential summability under the only assumption that there exists R>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R>0$$\end{document} such that |F(x)|2≤Ra(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|F(x)|^{2} \le R\,a(x)$$\end{document}; furthermore, we prove the boundedness of u under the slightly stronger assumption that there exists R>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R>0$$\end{document} such that |F(x)|p≤Ra(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|F(x)|^{p} \le R\,a(x)$$\end{document}, p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}.
引用
收藏
页码:1909 / 1921
页数:12
相关论文
共 16 条