On Rational Conformal Field Theories: Explicit Modular Formulae

被引:0
作者
Antoine D. Coste
机构
[1] CNRS and FB Math. Goethe University,
来源
Letters in Mathematical Physics | 2005年 / 72卷
关键词
rational conformal field theories; representations of modular group; classification; Galois groups in physics; characters; congruence subgroups; theta series.;
D O I
暂无
中图分类号
学科分类号
摘要
We derive compact formulae for modular transformation matrices of Wess–Zumino–Witten (WZW) affine characters. We start in this text with the simple case of A1 algebra at positive level k=n-2, for which we can easily provide some description of isometry group and genus formula in a special case. We also point to general features of these expressions, formulating and proving theorems for rational conformal field theories (sometimes called RCFT’s) which seem new.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 28 条
[1]  
Bantay P.(2003)The kernel of the modular representation and the Galois action in RCFT Commun. Math. Phys. 233 423-438
[2]  
Bauer M.(1997)Comments on the links between su(3) modular invariants. simple factors in the Jacobian of Fermat curves, and rational triangular billiards J. Geom. Phys. 22 134-189
[3]  
Coste A.(1984)Infinite conformal symmetry in two-dimensional quantum field theory Nucl. Phys. B 241 333-380
[4]  
Itzykson C.(1995)Precise study of some number fields and Galois actions occurring in conformal field theory Ann. Inst. H. Poincaré, Phys. Théor. 63 41-79
[5]  
Ruelle P.(1986)Operator content of two-dimensional conformally invariant theories Nucl. Phys. B. 270 186-204
[6]  
Belavin A.(1993)Implications of an arithmetical symmetry of the commutant for modular invariants Phys. Lett. B. 323 3-4
[7]  
Polyakov A.(1991)Markov traces and II, 1 factors in conformal field theory Comm. Math. Phys. 139 267-304
[8]  
Zamolodchikov A.(1995)Modular invariance and uniqueness of conformal characters Comm. Math. Phys. 174 623-659
[9]  
Buffenoir E.(1992)Chern–Simons–Witten invariants of lens spaces and torus bundles. and the semiclassical approximation Comm. Math. Phys. 147 563-604
[10]  
Coste A.(1989)On the structure of fusion algebras Phys. Lett. B. 217 247-251