Charge Stripes in Underdoped Cuprates: Ginzburg-Landau Description

被引:0
|
作者
Carsten Timm
K.H. Bennemann
机构
[1] Freie Universität Berlin,it>Institut für Theoretische Physik
来源
关键词
Experimental Evidence; Magnetic Material; Universal Property; Dynamical Charge; Antiferromagnetic Transition;
D O I
暂无
中图分类号
学科分类号
摘要
There is experimental evidence that the existence of dynamical charge stripes is a universal property of underdoped cuprates. We use a Ginzburg-Landau approach to study the interplay of the three order parameters describing anti-ferromagnetic, charge, and superconducting order. In this context we discuss the relevance of stripes for superconductivity and the effect of magnetically dressed holes on the antiferromagnetic transition.
引用
收藏
页码:205 / 209
页数:4
相关论文
共 50 条
  • [31] HOMOGENIZED DESCRIPTION OF MULTIPLE GINZBURG-LANDAU VORTICES PINNED BY SMALL HOLES
    Berlyand, Leonid
    Rybalko, Volodymyr
    NETWORKS AND HETEROGENEOUS MEDIA, 2013, 8 (01) : 115 - 130
  • [32] ANALYTICITY OF GINZBURG-LANDAU MODES
    SCHNEIDER, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) : 233 - 257
  • [33] The improved Ginzburg-Landau technique
    Mannarelli, Massimo
    QCD@WORK 2018 - INTERNATIONAL WORKSHOP ON QUANTUM CHROMODYNAMICS - THEORY AND EXPERIMENT, 2018, 192
  • [34] Vortices in Ginzburg-Landau billiards
    Akkermans, E
    Mallick, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (41): : 7133 - 7143
  • [35] On the Ginzburg-Landau energy of corners
    Correggi, Michele
    Giacomelli, Emanuela L.
    Kachmar, Ayman
    NONLINEARITY, 2025, 38 (04)
  • [36] MAXIMUM OF THE GINZBURG-LANDAU FIELDS
    Belius, David
    Wu, Wei
    ANNALS OF PROBABILITY, 2020, 48 (06): : 2647 - 2679
  • [37] Reduced description of the confined quasi-reversible Ginzburg-Landau equation
    Clerc, M
    Coullet, P
    Tirapegui, E
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2000, (139): : 337 - 343
  • [38] Dynamics of Ginzburg-Landau vortices
    Jerrard, RL
    Soner, HM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (02) : 99 - 125
  • [39] DEGENERATE GINZBURG-LANDAU FUNCTIONALS
    Franchi, Bruno
    Serra, Elena
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2006, 7 (03) : 443 - 452
  • [40] On a variant of the Ginzburg-Landau energy
    Lassoued, Lotfi
    Lefter, Catalin
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (01): : 39 - 51