3-Bihom-ρ-Lie Algebras, 3-Pre-Bihom-ρ-Lie Algebras

被引:0
作者
Zahra Bagheri
Esmaeil Peyghan
机构
[1] Arak University,Department of Mathematics, Faculty of Science
来源
Chinese Annals of Mathematics, Series B | 2023年 / 44卷
关键词
3-Bihom-; -Lie algebra; 3-Pre-Bihom-; Lie algebra; Rota-Baxer operator; 13-03; 17B70; 17B75;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose is to introduce the notions of 3-Bihom-ρ-Lie algebras and 3-pre-Bihom-ρ-Lie algebras. The authors describe their constructions and express the related lemmas and theorems. Also, they define the 3-Bihom-ρ-Leibniz algebras and show that a 3-Bihom-ρ-Lie algebra is a 3-Bihom-ρ-Leibniz algebra with the ρ-Bihom-skew symmetry property. Moreover, a combination of a 3-Bihom-ρ-Lie algebra bracket and a Rota-Baxer operator gives a 3-pre-Bihom-ρ-Lie algebra structure.
引用
收藏
页码:193 / 208
页数:15
相关论文
共 40 条
[1]  
Armakan A R(2021)Extensions of hom-Lie color algebras Geor. Math. J. 28 15-27
[2]  
Silvestrov S(2021)Quadratic and symplectic structures on 3-(Hom)- J. Math. Phys. 62 081702-891
[3]  
Farhangdoost M R(1985)-Lie algebras Siberian. Math. J. 26 879-288
[4]  
Bagheri Z(1963)-Lie algebras Ann. Math. 78 267-76
[5]  
Peyghan E(2009)The cohomology structure of an associative ring Nuclear Physics B 811 66-361
[6]  
Filippov V T(2006)Algebraic structures on parallel M2-branes J. Algebra 295 314-5390
[7]  
Gerstenhaber M(2008)Deformations of Lie algebras using J. High. Energy Phys. 6 020-326
[8]  
Gustavsson A(2020)-derivations Commu. Alg. 48 5374-383
[9]  
Hartwig J T(2019)Lie 3-algebra and multiple M2-branes Lin. Multi. Algebra 67 299-594
[10]  
Larsson D(2015)The construction of 3-Bihom-Lie algebras J. Geom. Phys. 98 376-2412