Object identification in computational ghost imaging based on deep learning

被引:0
作者
Jianbo Li
Mingnan Le
Jun Wang
Wei Zhang
Bin Li
Jinye Peng
机构
[1] Northwest University,School of Information Science and Technology
来源
Applied Physics B | 2020年 / 126卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Processing method plays an important role in accelerating imaging process in ghost imaging. In this study, we propose a processing method with the Hadamard matrix and a deep neural network called ghost imaging hadamard neural network (GIHNN). We focus on how to break through the bottleneck of image reconstruction time, and GIHNN can identify an object before the imaging process. Our research reveals that the light intensity value contains the feature information of the object and expands the possibility of further applications of artificial intellectual techniques in computational ghost imaging.
引用
收藏
相关论文
共 50 条
[31]   Author Correction: Deep-learning-based ghost imaging [J].
Meng Lyu ;
Wei Wang ;
Hao Wang ;
Haichao Wang ;
Guowei Li ;
Ni Chen ;
Guohai Situ .
Scientific Reports, 8 (1)
[32]   Fast adaptive parallel computational ghost imaging based on meta learning [J].
Li, Qi ;
Huang, Guancheng ;
Li, Yutong ;
Liu, Gangshan ;
Liu, Wei ;
Chi, Dazhao ;
Gao, Bin ;
Liu, Shutian ;
Liu, Zhengjun .
OPTICS AND LASERS IN ENGINEERING, 2025, 184
[33]   0.8% Nyquist computational ghost imaging via non-experimental deep learning [J].
Song, Haotian ;
Nie, Xiaoyu ;
Su, Hairong ;
Chen, Hui ;
Zhou, Yu ;
Zhao, Xingchen ;
Peng, Tao ;
Scully, Marlan O. .
OPTICS COMMUNICATIONS, 2022, 520
[34]   High-performance deep-learning based polarization computational ghost imaging with random patterns and orthonormalization [J].
Xu, Chenxiang ;
Li, Dekui ;
Fan, Xueqiang ;
Lin, Bing ;
Guo, Kai ;
Yin, Zhiping ;
Guo, Zhongyi .
PHYSICA SCRIPTA, 2023, 98 (06)
[35]   Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging [J].
Guo, Hui ;
Wang, Le ;
Zhao, Sheng-Mei .
CHINESE PHYSICS B, 2022, 31 (08)
[36]   Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging [J].
Wang, Fei ;
Wang, Hao ;
Wang, Haichao ;
Li, Guowei ;
Situ, Guohai .
OPTICS EXPRESS, 2019, 27 (18) :25560-25572
[37]   Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging [J].
郭辉 ;
王乐 ;
赵生妹 .
ChinesePhysicsB, 2022, 31 (08) :278-285
[38]   High speed ghost imaging based on a heuristic algorithm and deep learning* [J].
Huang, Yi-Yi ;
Ou-Yang, Chen ;
Fang, Ke ;
Dong, Yu-Feng ;
Zhang, Jie ;
Chen, Li-Ming ;
Wu, Ling-An .
CHINESE PHYSICS B, 2021, 30 (06)
[39]   Computational ghost imaging based on negative film imaging [J].
Yang, Anrun ;
Zhang, Yuan ;
Ren, Lirong ;
Li, Fangqiong ;
Wu, Yuanyuan ;
Wu, Lei ;
Zhang, Dejian ;
Liu, Jiangtao .
OPTIK, 2023, 284
[40]   High speed ghost imaging based on a heuristic algorithm and deep learning [J].
黄祎祎 ;
欧阳琛 ;
方可 ;
董玉峰 ;
张杰 ;
陈黎明 ;
吴令安 .
Chinese Physics B, 2021, (06) :308-314