Object identification in computational ghost imaging based on deep learning

被引:0
作者
Jianbo Li
Mingnan Le
Jun Wang
Wei Zhang
Bin Li
Jinye Peng
机构
[1] Northwest University,School of Information Science and Technology
来源
Applied Physics B | 2020年 / 126卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Processing method plays an important role in accelerating imaging process in ghost imaging. In this study, we propose a processing method with the Hadamard matrix and a deep neural network called ghost imaging hadamard neural network (GIHNN). We focus on how to break through the bottleneck of image reconstruction time, and GIHNN can identify an object before the imaging process. Our research reveals that the light intensity value contains the feature information of the object and expands the possibility of further applications of artificial intellectual techniques in computational ghost imaging.
引用
收藏
相关论文
共 50 条
[21]   DeepGhost: real-time computational ghost imaging via deep learning [J].
Rizvi, Saad ;
Cao, Jie ;
Zhang, Kaiyu ;
Hao, Qun .
SCIENTIFIC REPORTS, 2020, 10 (01)
[22]   Computational ghost imaging with deep compressed sensing [J].
张浩 ;
夏云杰 ;
段德洋 .
Chinese Physics B, 2021, 30 (12) :445-448
[23]   Computational ghost imaging with deep compressed sensing* [J].
Zhang, Hao ;
Xia, Yunjie ;
Duan, Deyang .
CHINESE PHYSICS B, 2021, 30 (12)
[24]   Translated object identification for efficient ghost imaging [J].
Ruget, Alice ;
Moodley, Chane ;
Forbes, Andrew ;
Leach, Jonathan .
OPTICS EXPRESS, 2024, 32 (23) :41057-41068
[25]   Improving the reliability of deep learning computational ghost imaging with prediction uncertainty based on neighborhood feature maps [J].
Kataoka, Shoma ;
Mizutani, Yasuhiro ;
Uenohara, Tsutomu ;
Ipus, Erick ;
Nitta, Koichi ;
Matoba, Osamu ;
Takaya, Yasuhiro ;
Tajahuerce, Enrique .
APPLIED OPTICS, 2024, 63 (14) :3736-3744
[26]   Handwritten digit recognition based on ghost imaging with deep learning* [J].
He, Xing ;
Zhao, Sheng-Mei ;
Wang, Le .
CHINESE PHYSICS B, 2021, 30 (05)
[27]   Handwritten digit recognition based on ghost imaging with deep learning [J].
何行 ;
赵生妹 ;
王乐 .
Chinese Physics B, 2021, 30 (05) :249-254
[28]   A residual-based deep learning approach for ghost imaging [J].
Bian, Tong ;
Yi, Yuxuan ;
Hu, Jiale ;
Zhang, Yin ;
Wang, Yide ;
Gao, Lu .
SCIENTIFIC REPORTS, 2020, 10 (01)
[29]   Restoration of Ghost Imaging in Atmospheric Turbulence Based on Deep Learning [J].
Jiang, Chenzhe ;
Xu, Banglian ;
Zhang, Leihong ;
Zhang, Dawei .
CURRENT OPTICS AND PHOTONICS, 2023, 7 (06) :655-664
[30]   A residual-based deep learning approach for ghost imaging [J].
Tong Bian ;
Yuxuan Yi ;
Jiale Hu ;
Yin Zhang ;
Yide Wang ;
Lu Gao .
Scientific Reports, 10