Modified Spherical Harmonics

被引:0
作者
Heinz Leutwiler
机构
[1] University of Erlangen-Nuremberg,Mathematical Institute
来源
Advances in Applied Clifford Algebras | 2017年 / 27卷
关键词
30G35; Spherical harmonics; Generalized axially symmetric potentials; Generalized function theory; Hyperbolic metric;
D O I
暂无
中图分类号
学科分类号
摘要
A modification of the classical theory of spherical harmonics is presented. The unit sphere S in R3={(x,y,t)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3 = \{(x,y,t)\}}$$\end{document} is replaced by the half-sphere S+ in the upper half space, the Euclidean scalar product on S by a non-Euclidean one on S+, and the Laplace equation Δh=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta h = 0}$$\end{document} by the equation tΔv+∂v∂t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t\Delta v + \frac{\partial v }{\partial t}= 0}$$\end{document}. It will be shown that most results from the theory of spherical harmonics in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} stay valid in this modified setting.
引用
收藏
页码:1479 / 1502
页数:23
相关论文
共 4 条
[1]  
Huber A.(1954)On the uniqueness of generalized axially symmetric potentials Ann. Math. 60 351-358
[2]  
Leutwiler H.(1992)Modified quaternionic analysis in Complex Variables Theory Appl. 20 19-51
[3]  
Leutwiler H.(1996)Rudiments of a function theory in Expos. Math. 14 97-123
[4]  
Weinstein A.(1948)Discontinuous integrals and generalized potential theory Trans. Am. Math. Soc. 63 342-354