Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries

被引:68
作者
Cui, Zhuangzhuang [1 ]
Jia, Zhuangzhuang [2 ]
Ruan, Digen [1 ]
Nian, Qingshun [1 ]
Fan, Jiajia [1 ]
Chen, Shunqiang [1 ]
He, Zixu [1 ]
Wang, Dazhuang [1 ]
Jiang, Jinyu [1 ]
Ma, Jun [1 ]
Ou, Xing [3 ]
Jiao, Shuhong [1 ]
Wang, Qingsong [2 ]
Ren, Xiaodi [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[3] Cent South Univ, Engn Res Ctr, Sch Met & Environm, Minist Educ Adv Battery Mat, 932 South Lushan Rd, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
LIQUID ELECTROLYTE; THERMAL RUNAWAY; HYDROGEN-BOND; ION BATTERY; ANODES; MODEL;
D O I
10.1038/s41467-024-46186-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Constraining the electrochemical reactivity of free solvent molecules is pivotal for developing high-voltage lithium metal batteries, especially for ether solvents with high Li metal compatibility but low oxidation stability ( <4.0 V vs Li+/Li). The typical high concentration electrolyte approach relies on nearly saturated Li+ coordination to ether molecules, which is confronted with severe side reactions under high voltages ( >4.4 V) and extensive exothermic reactions between Li metal and reactive anions. Herein, we propose a molecular anchoring approach to restrict the interfacial reactivity of free ether solvents in diluted electrolytes. The hydrogen-bonding interactions from the anchoring solvent effectively suppress excessive ether side reactions and enhances the stability of nickel rich cathodes at 4.7 V, despite the extremely low Li+/ether molar ratio (1:9) and the absence of typical anion-derived interphase. Furthermore, the exothermic processes under thermal abuse conditions are mitigated due to the reduced reactivity of anions, which effectively postpones the battery thermal runaway.
引用
收藏
页数:12
相关论文
共 61 条
[21]   Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries [J].
Hou, Junxian ;
Feng, Xuning ;
Wang, Li ;
Liu, Xiang ;
Ohma, Atsushi ;
Lu, Languang ;
Ren, Dongsheng ;
Huang, Wensheng ;
Li, Yan ;
Yi, Mengchao ;
Wang, Yu ;
Ren, Jianqiao ;
Meng, Zihan ;
Chu, Zhengyu ;
Xu, Gui-Liang ;
Amine, Khalil ;
He, Xiangming ;
Wang, Hewu ;
Nitta, Yoshiaki ;
Ouyang, Minggao .
ENERGY STORAGE MATERIALS, 2021, 39 :395-402
[22]   Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes [J].
Hou, Junxian ;
Lu, Languang ;
Wang, Li ;
Ohma, Atsushi ;
Ren, Dongsheng ;
Feng, Xuning ;
Li, Yan ;
Li, Yalun ;
Ootani, Issei ;
Han, Xuebing ;
Ren, Weining ;
He, Xiangming ;
Nitta, Yoshiaki ;
Ouyang, Minggao .
NATURE COMMUNICATIONS, 2020, 11 (01)
[23]   Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries [J].
Hou, Li-Peng ;
Yao, Nan ;
Xie, Jin ;
Shi, Peng ;
Sun, Shu-Yu ;
Jin, Cheng-Bin ;
Chen, Cheng-Meng ;
Liu, Quan-Bing ;
Li, Bo-Quan ;
Zhang, Xue-Qiang ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (20)
[24]   Is Nonflammability of Electrolyte Overrated in the Overall Safety Performance of Lithium Ion Batteries? A Sobering Revelation from a Completely Nonflammable Electrolyte [J].
Jia, Hao ;
Yang, Zhijie ;
Xu, Yaobin ;
Gao, Peiyuan ;
Zhong, Lirong ;
Kautz, David J. J. ;
Wu, Dengguo ;
Fliegler, Ben ;
Engelhard, Mark H. H. ;
Matthews, Bethany E. E. ;
Broekhuis, Benjamin ;
Cao, Xia ;
Fan, Jiang ;
Wang, Chongmin ;
Lin, Feng ;
Xu, Wu .
ADVANCED ENERGY MATERIALS, 2023, 13 (04)
[25]   Inhibiting Solvent Co-Intercalation in a Graphite Anode by a Localized High-Concentration Electrolyte in Fast-Charging Batteries [J].
Jiang, Li-Li ;
Yan, Chong ;
Yao, Yu-Xing ;
Cai, Wenlong ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (07) :3402-3406
[26]   Stable cycling of high-voltage lithium metal batteries in ether electrolytes [J].
Jiao, Shuhong ;
Ren, Xiaodi ;
Cao, Ruiguo ;
Engelhard, Mark H. ;
Liu, Yuzi ;
Hu, Dehong ;
Mei, Donghai ;
Zheng, Jianming ;
Zhao, Wengao ;
Li, Qiuyan ;
Liu, Ning ;
Adams, Brian D. ;
Ma, Cheng ;
Liu, Jun ;
Zhang, Ji-Guang ;
Xu, Wu .
NATURE ENERGY, 2018, 3 (09) :739-746
[27]   Lithium-Metal Batteries: From Fundamental Research to Industrialization [J].
Kim, Sujin ;
Park, Gyuleen ;
Lee, Seung Jong ;
Seo, Samuel ;
Ryu, Kyounghan ;
Kim, Chang Hwan ;
Choi, Jang Wook .
ADVANCED MATERIALS, 2023, 35 (43)
[28]   Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials [J].
Li, Yan ;
Liu, Xiang ;
Wang, Li ;
Feng, Xuning ;
Ren, Dongsheng ;
Wu, Yu ;
Xu, Guiliang ;
Lu, Languang ;
Hou, Junxian ;
Zhang, Weifeng ;
Wang, Yongling ;
Xu, Wenqian ;
Ren, Yang ;
Wang, Zaifa ;
Huang, Jianyu ;
Meng, Xiangfeng ;
Han, Xuebing ;
Wang, Hewu ;
He, Xiangming ;
Chen, Zonghai ;
Amine, Khalil ;
Ouyang, Minggao .
NANO ENERGY, 2021, 85 (85)
[29]  
Lin DC, 2017, NAT NANOTECHNOL, V12, P194, DOI [10.1038/nnano.2017.16, 10.1038/NNANO.2017.16]
[30]   Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives [J].
Liu, Dai-Huo ;
Bai, Zhengyu ;
Li, Matthew ;
Yu, Aiping ;
Luo, Dan ;
Liu, Wenwen ;
Yang, Lin ;
Lu, Jun ;
Amine, Khalil ;
Chen, Zhongwei .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (15) :5407-5445