A novel two-phase hybrid selection mechanism feeder to improve performance of many-objective optimization algorithms

被引:0
作者
Babak Nasseh Chaffi
Mohsen Rahmani
机构
[1] Arak University,Computer Engineering
来源
Evolutionary Intelligence | 2024年 / 17卷
关键词
Many-objective optimization; Hybrid algorithm; Evolutionary algorithm; Particle swarm optimization; Pareto-front;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:889 / 920
页数:31
相关论文
共 142 条
  • [1] Deb K(2002)A fast and elitist multiobjective genetic algorithm: Nsga-ii IEEE Trans Evolut Comput 6 182-197
  • [2] Pratap A(2020)Solving the multi-objective flexible job shop scheduling problem with a novel parallel branch and bound algorithm Swarm Evolut Comput 53 100632-85
  • [3] Agarwal S(2020)A multi-objective adaptive evolutionary algorithm to extract communities in networks Swarm Evolut Comput 52 100629-4795
  • [4] Meyarivan T(2020)Binary differential evolution with self-learning for multi-objective feature selection Inf Sci 507 67-248
  • [5] Soto C(2017)Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering J Supercomput 73 4773-76
  • [6] Li Q(2020)An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing Appl Soft Comput 87 106003-744
  • [7] Cao Z(1994)Multiobjective optimization using nondominated sorting in genetic algorithms Evolut Comput 2 221-784
  • [8] Ding W(2018)A competitive mechanism based multi-objective particle swarm optimizer with fast convergence Inf Sci 427 63-42
  • [9] Li Q(2015)A novel multi-objective particle swarm optimization with multiple search strategies Eur J Op Res 247 732-187
  • [10] Zhang Y(2007)On the evolutionary optimization of many conflicting objectives IEEE Trans Evolut Comput 11 770-1287