The Wavelet Transform in Clifford Analysis

被引:0
作者
Jan Cnops
机构
[1] BME,
[2] Hogeschool Gent,undefined
关键词
Clifford analysis; wavelet transform; weighted Bergman spaces; invariant Dirac operator; 30G35; 42B20;
D O I
10.1007/BF03320996
中图分类号
学科分类号
摘要
The upper half space G = {(x0,…, xn): x0 > 0} can be considered as the group generated by dilations and translations on ℝn. This group has a natural unitary representation on L2(ℝn). Using the continuous wavelet transform, certain Banach and Hilbert spaces of functions monogenic (i.e. solutions of the Cauchy-Riemann operator) on the Poincaré half space are constructed. The Hilbert spaces are linked with the fractional calculus of the Dirac operator on ℝn.
引用
收藏
页码:353 / 374
页数:21
相关论文
共 8 条
[1]  
Delanghe R(1978)Hypercomplex function theory and Hilbert modules with reproducing kernel Proc. Lond. Math. Soc. III Ser. 37 545-576
[2]  
Brackx F(1992)Reproducing formulae for monogenic functions Bull. Soc. Math. Belg, Sér. B 44 171-192
[3]  
Peetre J(1985)Transforms associated to square integrable group representations, I. General results J. Math. Phys. 26 2473-2479
[4]  
Grossmann A(1986)Microfunctions with values in a Clifford algebra II Sci. Pap. Coll. Arts Sci., Univ. Tokyo 36 15-37
[5]  
Morlet J(1988)Special functions in Clifford analysis and axial symmetry J. Math. Anal. Appl. 130 110-133
[6]  
Paul T(undefined)undefined undefined undefined undefined-undefined
[7]  
Sommen F(undefined)undefined undefined undefined undefined-undefined
[8]  
Sommen F(undefined)undefined undefined undefined undefined-undefined