Multiplication by finite Blaschke factors on a general class of Hardy spaces

被引:0
作者
Apoorva Singh
Niteesh Sahni
机构
[1] Shiv Nadar Institute of Eminence (Deemed to be University),Department of Mathematics, School of Natural Sciences
来源
Advances in Operator Theory | 2022年 / 7卷
关键词
Normalized gauge norm; Blaschke factor; Invariant subspace; Rotationally symmetric norm; Hardy space; Lebesgue space; Inner–outer factorization; 47A15; 30H10; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
A broader class of Hardy spaces and Lebesgue spaces have been introduced recently on the unit circle by considering continuous ‖·‖1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \cdot \Vert _1$$\end{document}-dominating normalized gauge norms instead of the classical norms on measurable functions. A Beurling type result has been proved for the operator of multiplication by the coordinate function. In this paper, we generalize the above Beurling type result to the context of multiplication by a finite Blaschke factor B(z) and also derive the common invariant subspaces of B2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^2(z)$$\end{document} and B3(z).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^3(z).$$\end{document} These results lead to a factorization result for all functions in the Hardy space equipped with a continuous rotationally symmetric norm.
引用
收藏
相关论文
共 30 条
[1]  
Beurling A(1948)On two problems concerning linear transformations in Hilbert space Acta Math. 81 239-255
[2]  
Chen Y(2017)A general Beurling–Helson–Lowdenslager theorem on the disk Adv. Appl. Math. 87 1-15
[3]  
Chen Y(2016)A general vector-valued Beurling theorem Integral Equ. Oper. Theory 86 321-332
[4]  
Hadwin D(2009)A constrained Nevanlinna–Pick interpolation problem Indiana Univ. Math. J. 58 709-732
[5]  
Zhang Y(1961)Shifts on Hilbert spaces J. Reine Angew. Math. 208 102-112
[6]  
Davidson KR(2016)Invariance under bounded analytic functions: generalizing shifts N. Y. J. Math. 22 1249-1270
[7]  
Paulsen VI(1997)Multiplication invariant subspaces of Hardy spaces Can. J. Math. 49 100-118
[8]  
Raghupathi M(2010)A finite multiplicity Helson–Lowdenslager–de Branges theorem Stud. Math. 200 247-266
[9]  
Singh D(1959)Translation invariant spaces Acta Math. 101 163-178
[10]  
Halmos PR(2001)A Helson–Lowdenslager–de Branges theorem in Proc. Am. Math. Soc. 129 1097-1103