The Gårding cones in the modern theory of fully nonlinear second order differential equations

被引:3
作者
N. M. Ivochkina
S. I. Prokof’eva
G. V. Yakunina
机构
[1] St. Petersburg State University of Architecture and Civil Engineering, St. Petersburg 190005
关键词
Dirichlet Problem; Viscosity Solution; Principal Curvature; Bellman Equation; Positive Factor Matrix;
D O I
10.1007/s10958-012-0869-1
中图分类号
学科分类号
摘要
The modern theory of fully nonlinear second order partial differential equations is based on some algebraic facts and, in particular, on the theory of a-hyperbolic polynomials created by L. Gårding in 1959. The goal of this paper is to describe the Gårding cones in this context. Bibliography: 30 titles. © 2012 Springer Science+Business Media, Inc.
引用
收藏
页码:295 / 315
页数:20
相关论文
共 30 条
[1]  
Evans L.C., Classical solutions of fully nonlinear convex second order elliptic equations, Commun. Pure Appl. Math., 25, pp. 333-363, (1982)
[2]  
Krylov N.V., Boundedly nonhomogeneous elliptic and parabolic equations in a domain, Math. USSR, Izv., 22, pp. 67-97, (1984)
[3]  
Safonov M.V., Harnack's inequality for elliptic equations and the Hölder property of their solutions, J. Sov. Math., 21, pp. 851-863, (1983)
[4]  
Safonov M.V., Smoothness near the boundary of the solutions of the elliptic Bellman equations, J. Sov. Math., 37, pp. 885-888, (1987)
[5]  
Ivochkina N.M., On second order differential equations with d-elliptic operators, Proc. Steklov Inst. Math., 147, pp. 37-54, (1981)
[6]  
Ivochkina N.M., Integral method of barrier functions and the DIrichlet problem for equations with operators of Monge-Ampère type, Math. USSR Sb., 40, 2, pp. 179-192, (1981)
[7]  
Ivochkina N.M., A description of the stability cones generated by differential operators of Monge-Ampère type, Math. USSR, Sb., 50, pp. 259-268, (1985)
[8]  
Ivochkina N.M., Solution of the Dirichlet problem for some equations of Monge-Ampère type, Math. USSR-Sb., 56, 2, pp. 403-415, (1987)
[9]  
Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the eigenvalues of the Hessian, Acta Math., 155, pp. 261-301, (1985)
[10]  
Garding L., An inequality for hyperbolic polynomials, J. Math. Mech., 8, pp. 957-965, (1959)