Limit theorems for linear processes with tapered innovations and filters

被引:0
作者
Vygantas Paulauskas
机构
[1] Vilnius University,Department of Mathematics and Informatics
来源
Lithuanian Mathematical Journal | 2024年 / 64卷
关键词
primary 60G99; secondary 60G22; 60F17; Random linear processes; limit theorems; tapered distributions; tapered filter;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the partial-sum process ∑k=1ntXkn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum }_{k=1}^{\left[nt\right]}{X}_{k}^{\left(n\right)},$$\end{document} where Xkn=∑j=0∞αjnξk-jbn,k∈Z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{{X}_{k}^{\left(n\right)}={\sum }_{j=0}^{\infty }{\alpha }_{j}^{\left(n\right)}{\xi }_{k-j}\left(b\left(n\right)\right), k\in {\mathbb{Z}}\right\},$$\end{document}n ≥ 1, is a series of linear processes with tapered filter αjn=αj10≤j≤λn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{j}^{\left(n\right)}={\alpha }_{j} {1}_{\left\{0\le j\le\lambda\left(n\right)\right\}}$$\end{document} and heavy-tailed tapered innovations ξj(b(n)), j ∈ Z. Both tapering parameters b(n) and ⋋ (n) grow to ∞ as n→∞. The limit behavior of the partial-sum process (in the sense of convergence of finite-dimensional distributions) depends on the growth of these two tapering parameters and dependence properties of a linear process with nontapered filter ai, i ≥ 0, and nontapered innovations. We consider the cases where b(n) grows relatively slowly (soft tapering) and rapidly (hard tapering) and all three cases of growth of ⋋(n) (strong, weak, and moderate tapering).
引用
收藏
页码:80 / 100
页数:20
相关论文
共 50 条
  • [41] Discrete rough paths and limit theorems
    Liu, Yanghui
    Tindel, Samy
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 1730 - 1774
  • [42] Limit theorems for the ratio of weak records
    Dembinska, A.
    Stepanov, A.
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (14) : 1454 - 1464
  • [43] On permutation-invariance of limit theorems
    Berkes, I.
    Tichy, R.
    JOURNAL OF COMPLEXITY, 2015, 31 (03) : 372 - 379
  • [44] Stable limit theorems on the Poisson space
    Herry, Ronan
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 30
  • [45] Empirical limit theorems for Wiener chaos
    Bai, Shuyang
    Chen, Jiemiao
    STATISTICS & PROBABILITY LETTERS, 2024, 215
  • [46] Strong Law of Large Numbers and Central Limit Theorems for Functionals of Inhomogeneous Semi-Markov Processes
    Vadori, N.
    Swishchuk, A.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2015, 33 (02) : 213 - 243
  • [47] LIMIT THEOREMS FOR FUNCTIONS OF A FRACTIONAL BROWNIAN MOTION
    Savitskii, A., V
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2020, 65 (01) : 32 - 48
  • [48] LIMIT THEOREMS FOR A GENERAL STOCHASTIC RUMOUR MODEL
    Lebensztayn, E.
    Machado, F. P.
    Rodriguez, P. M.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (04) : 1476 - 1486
  • [49] Limit theorems for multifractal products of random fields
    Donhauzer, Illia
    Olenko, Andriy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [50] Remarks on Limit Theorems for the Free Quadratic Forms
    Ejsmont, Wiktor
    Biernacki, Marek
    Hecka, Patrycja
    ENTROPY, 2024, 26 (10)