Limit theorems for linear processes with tapered innovations and filters

被引:0
作者
Vygantas Paulauskas
机构
[1] Vilnius University,Department of Mathematics and Informatics
来源
Lithuanian Mathematical Journal | 2024年 / 64卷
关键词
primary 60G99; secondary 60G22; 60F17; Random linear processes; limit theorems; tapered distributions; tapered filter;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the partial-sum process ∑k=1ntXkn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum }_{k=1}^{\left[nt\right]}{X}_{k}^{\left(n\right)},$$\end{document} where Xkn=∑j=0∞αjnξk-jbn,k∈Z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{{X}_{k}^{\left(n\right)}={\sum }_{j=0}^{\infty }{\alpha }_{j}^{\left(n\right)}{\xi }_{k-j}\left(b\left(n\right)\right), k\in {\mathbb{Z}}\right\},$$\end{document}n ≥ 1, is a series of linear processes with tapered filter αjn=αj10≤j≤λn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{j}^{\left(n\right)}={\alpha }_{j} {1}_{\left\{0\le j\le\lambda\left(n\right)\right\}}$$\end{document} and heavy-tailed tapered innovations ξj(b(n)), j ∈ Z. Both tapering parameters b(n) and ⋋ (n) grow to ∞ as n→∞. The limit behavior of the partial-sum process (in the sense of convergence of finite-dimensional distributions) depends on the growth of these two tapering parameters and dependence properties of a linear process with nontapered filter ai, i ≥ 0, and nontapered innovations. We consider the cases where b(n) grows relatively slowly (soft tapering) and rapidly (hard tapering) and all three cases of growth of ⋋(n) (strong, weak, and moderate tapering).
引用
收藏
页码:80 / 100
页数:20
相关论文
共 50 条
  • [31] Limit Theorems for Critical Galton-Watson Processes with Immigration Stopped at Zero
    Dou Dou Li
    Mei Zhang
    Xian Yu Zhang
    Acta Mathematica Sinica, English Series, 2024, 40 : 435 - 450
  • [32] Limit theorems for nonlinear functionals of Volterra processes via white noise analysis
    Darses, Sebastien
    Nourdin, Ivan
    Nualart, David
    BERNOULLI, 2010, 16 (04) : 1262 - 1293
  • [33] Maxima of linear processes with heavy-tailed innovations and random coefficients
    Krizmanic, Danijel
    JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (02) : 238 - 262
  • [34] LIMIT THEOREMS FOR MARKOV PROCESSES INDEXED BY CONTINUOUS TIME GALTON-WATSON TREES
    Bansaye, Vincent
    Delmas, Jean-Francois
    Marsalle, Laurence
    Tran, Viet Chi
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (06) : 2263 - 2314
  • [35] Nonconventional limit theorems in averaging
    Kifer, Yuri
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (01): : 236 - 255
  • [36] On almost sure limit theorems
    Ibragimov, IA
    Lifshits, MA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 44 (02) : 254 - 272
  • [37] Limit theorems in spline approximation
    Ganzburg, MI
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (01) : 15 - 31
  • [38] INTERMITTENCY AND MULTISCALING IN LIMIT THEOREMS
    Grahovac, Danijel
    Leonenko, Nikolai N.
    Taqqu, Murad S.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [39] Limit theorems for monochromatic stars
    Bhattacharya, Bhaswar B.
    Mukherjee, Sumit
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (04) : 831 - 853
  • [40] LIMIT-THEOREMS FOR POLYLINEAR FORMS
    ROTAR, VI
    JOURNAL OF MULTIVARIATE ANALYSIS, 1979, 9 (04) : 511 - 530