We consider the partial-sum process ∑k=1ntXkn,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\sum }_{k=1}^{\left[nt\right]}{X}_{k}^{\left(n\right)},$$\end{document} where Xkn=∑j=0∞αjnξk-jbn,k∈Z,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{{X}_{k}^{\left(n\right)}={\sum }_{j=0}^{\infty }{\alpha }_{j}^{\left(n\right)}{\xi }_{k-j}\left(b\left(n\right)\right), k\in {\mathbb{Z}}\right\},$$\end{document}n ≥ 1, is a series of linear processes with tapered filter αjn=αj10≤j≤λn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\alpha }_{j}^{\left(n\right)}={\alpha }_{j} {1}_{\left\{0\le j\le\lambda\left(n\right)\right\}}$$\end{document} and heavy-tailed tapered innovations ξj(b(n)), j ∈ Z. Both tapering parameters b(n) and ⋋ (n) grow to ∞ as n→∞. The limit behavior of the partial-sum process (in the sense of convergence of finite-dimensional distributions) depends on the growth of these two tapering parameters and dependence properties of a linear process with nontapered filter ai, i ≥ 0, and nontapered innovations. We consider the cases where b(n) grows relatively slowly (soft tapering) and rapidly (hard tapering) and all three cases of growth of ⋋(n) (strong, weak, and moderate tapering).