Limit theorems for linear processes with tapered innovations and filters

被引:0
作者
Vygantas Paulauskas
机构
[1] Vilnius University,Department of Mathematics and Informatics
来源
Lithuanian Mathematical Journal | 2024年 / 64卷
关键词
primary 60G99; secondary 60G22; 60F17; Random linear processes; limit theorems; tapered distributions; tapered filter;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the partial-sum process ∑k=1ntXkn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum }_{k=1}^{\left[nt\right]}{X}_{k}^{\left(n\right)},$$\end{document} where Xkn=∑j=0∞αjnξk-jbn,k∈Z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{{X}_{k}^{\left(n\right)}={\sum }_{j=0}^{\infty }{\alpha }_{j}^{\left(n\right)}{\xi }_{k-j}\left(b\left(n\right)\right), k\in {\mathbb{Z}}\right\},$$\end{document}n ≥ 1, is a series of linear processes with tapered filter αjn=αj10≤j≤λn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }_{j}^{\left(n\right)}={\alpha }_{j} {1}_{\left\{0\le j\le\lambda\left(n\right)\right\}}$$\end{document} and heavy-tailed tapered innovations ξj(b(n)), j ∈ Z. Both tapering parameters b(n) and ⋋ (n) grow to ∞ as n→∞. The limit behavior of the partial-sum process (in the sense of convergence of finite-dimensional distributions) depends on the growth of these two tapering parameters and dependence properties of a linear process with nontapered filter ai, i ≥ 0, and nontapered innovations. We consider the cases where b(n) grows relatively slowly (soft tapering) and rapidly (hard tapering) and all three cases of growth of ⋋(n) (strong, weak, and moderate tapering).
引用
收藏
页码:80 / 100
页数:20
相关论文
共 50 条