Anomalous quantum Hall effect of 4D lattice QCD in background fields

被引:0
|
作者
L. B Drissi
H. Mhamdi
E. H. Saidi
机构
[1] INANOTECH,Lab HEP
[2] Institute of Nanomaterials and Nanotechnology (MAScIR),Modeling and Simulation, Faculty of Science
[3] International Centre for Theoretical Physics,undefined
[4] ICTP,undefined
[5] University Mohammed V-Agdal,undefined
[6] Centre of Physics and Mathematics,undefined
[7] CPM-CNESTEN,undefined
来源
Journal of High Energy Physics | / 2011卷
关键词
Lattice QCD; Lattice Gauge Field Theories; Lattice Quantum Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
Boriçi-Creutz (BC) model describing the dynamics of light quarks in lattice QCD has been shown to be intimately linked to the four dimensional extension of 2D graphene refereed below to as four dimensional graphene (4D-graphene). Borrowing ideas from the field theory description of the usual 2D graphene, we study in this paper the anomalous quantum Hall effect (AQHE) of the BC fermions in presence of a constant background field strength \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{F}_{\mu \nu }} $\end{document} with a special focuss on the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{F}_{\mu \nu }} = \mathcal{B}{\varepsilon_{\mu \nu 34}} + \mathcal{E}{\varepsilon_{12\mu \nu }} $\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{B} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{E} $\end{document} two real moduli and det \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{F}_{\mu \nu }} = {\mathcal{B}^2} \times {\mathcal{E}^2} $\end{document}. First, we revisit the anomalous 2D graphene by using QFT method. Then, we consider the AQHE of BC fermions for both regular det \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{F}_{\mu \nu }} \ne 0 $\end{document} and singular det Fμν = 0 cases. We show, amongst others, that the exact solutions of the BC fermions coupled to constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{F}_{\mu \nu }} $\end{document} have a 5D interpretation; and the filling factor νBC of the BC model coupled to constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{F}_{\mu \nu }} $\end{document} is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 24\frac{{\left( {2N + 1} \right)\left( {2M + 1} \right)}}{2} $\end{document} with N, M positive integers. Others features, such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{F}_{\mu \nu }^{QCD} \ne 0 $\end{document} and the extension of the obtained results to the lattice fermions like Karsten-Wilzeck (KW) fermions and naïve ones, are also discussed.
引用
收藏
相关论文
共 50 条
  • [1] Anomalous quantum Hall effect of 4D lattice QCD in background fields
    Drissi, L. B.
    Mhamdi, H.
    Saidi, E. H.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10):
  • [2] ADHM and the 4d quantum Hall effect
    Barns-Graham, Alec
    Dorey, Nick
    Lohitsiri, Nakarin
    Tong, David
    Turner, Carl
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [3] ADHM and the 4d quantum Hall effect
    Alec Barns-Graham
    Nick Dorey
    Nakarin Lohitsiri
    David Tong
    Carl Turner
    Journal of High Energy Physics, 2018
  • [4] SO(5) Landau model and 4D quantum Hall effect in the SO(4) monopole background
    Hasebe, Kazuki
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [5] Lattice QCD in Background Fields
    D'Elia, Massimo
    EXTREME QCD 2012 (XQCD), 2013, 432
  • [6] Ergodic edge modes in the 4D quantum Hall effect
    Estienne, Benoit
    Oblak, Blagoje
    Stephan, Jean-Marie
    SCIPOST PHYSICS, 2021, 11 (01):
  • [7] Lattice model for the quantum anomalous Hall effect in moiré graphene
    Khalifa A.
    Murthy G.
    Kaul R.K.
    Physical Review B, 2023, 107 (23)
  • [9] Electromagnetic Polarizabilities: Lattice QCD in Background Fields
    Detmold, W.
    Tiburzi, B. C.
    Walker-Loud, A.
    19TH PARTICLES AND NUCLEI INTERNATIONAL CONFERENCE (PANIC11), 2012, 1441 : 165 - 167
  • [10] Dynamical quantum anomalous Hall effect in strong optical fields
    Lee, Woo-Ram
    Tse, Wang-Kong
    PHYSICAL REVIEW B, 2017, 95 (20)