A property of meets in slim semimodular lattices and its application to retracts

被引:0
|
作者
Gábor Czédli
机构
[1] University of Wisconsin-La Crosse,Bolyai Institute
来源
关键词
slim semimodular lattice; planar semimodular lattice; rectangular lattice; retract; retraction; absorption property; 06C10;
D O I
暂无
中图分类号
学科分类号
摘要
Slim semimodular lattices were introduced by G. Grätzer and E. Knapp in 2007, and they have intensively been studied since then. These lattices can be given by C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}_1$$\end{document}-diagrams, defined by the author in 2017. We prove that if x and y are incomparable elements in such a lattice L, then their meet has the property that the interval [x∧y,x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x \wedge y, x]$$\end{document} is a chain, this chain is of a normal slope in every C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}_1$$\end{document}-diagram of L, and except possibly for x, the elements of this chain are meet-reducible.
引用
收藏
页码:595 / 610
页数:15
相关论文
共 50 条
  • [1] A property of meets in slim semimodular lattices and its application to retracts
    Czedli, Gabor
    ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (3-4): : 595 - 610
  • [2] Absolute Retracts for Finite Distributive Lattices and Slim Semimodular Lattices
    Czedli, Gabor
    Molkhasi, Ali
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2023, 40 (01): : 127 - 148
  • [3] Absolute Retracts for Finite Distributive Lattices and Slim Semimodular Lattices
    Gábor Czédli
    Ali Molkhasi
    Order, 2023, 40 : 127 - 148
  • [4] A new property of congruence lattices of slim, planar, semimodular lattices
    Czedli, Gabor
    Gratzer, George
    CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2022, 16 (01) : 1 - 28
  • [5] ON THE NUMBER OF SLIM, SEMIMODULAR LATTICES
    Czedli, Gabor
    Dekany, Tamas
    Ozsvart, Laszlo
    Szakacs, Nora
    Udvari, Balazs
    MATHEMATICA SLOVACA, 2016, 66 (01) : 5 - 18
  • [6] A note on congruence lattices of slim semimodular lattices
    Gábor Czédli
    Algebra universalis, 2014, 72 : 225 - 230
  • [7] A note on congruence lattices of slim semimodular lattices
    Czedli, Gabor
    ALGEBRA UNIVERSALIS, 2014, 72 (03) : 225 - 230
  • [8] Quasiplanar Diagrams and Slim Semimodular Lattices
    Czedli, Gabor
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2016, 33 (02): : 239 - 262
  • [9] Quasiplanar Diagrams and Slim Semimodular Lattices
    Gábor Czédli
    Order, 2016, 33 : 239 - 262
  • [10] Lamps in slim rectangular planar semimodular lattices
    Gábor Czédli
    Acta Scientiarum Mathematicarum, 2021, 87 : 381 - 413