A property of meets in slim semimodular lattices and its application to retracts

被引:0
作者
Gábor Czédli
机构
[1] University of Wisconsin-La Crosse,Bolyai Institute
来源
Acta Scientiarum Mathematicarum | 2022年 / 88卷
关键词
slim semimodular lattice; planar semimodular lattice; rectangular lattice; retract; retraction; absorption property; 06C10;
D O I
暂无
中图分类号
学科分类号
摘要
Slim semimodular lattices were introduced by G. Grätzer and E. Knapp in 2007, and they have intensively been studied since then. These lattices can be given by C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}_1$$\end{document}-diagrams, defined by the author in 2017. We prove that if x and y are incomparable elements in such a lattice L, then their meet has the property that the interval [x∧y,x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x \wedge y, x]$$\end{document} is a chain, this chain is of a normal slope in every C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}_1$$\end{document}-diagram of L, and except possibly for x, the elements of this chain are meet-reducible.
引用
收藏
页码:595 / 610
页数:15
相关论文
empty
未找到相关数据