Slim semimodular lattices were introduced by G. Grätzer and E.
Knapp in 2007, and they have intensively been studied since then. These
lattices can be given by C1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{C}_1$$\end{document}-diagrams, defined by the author in 2017. We
prove that if x and y are incomparable elements in such a lattice L, then
their meet has the property that the interval [x∧y,x]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[x \wedge y, x]$$\end{document} is a chain, this chain
is of a normal slope in every C1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{C}_1$$\end{document}-diagram of L, and except possibly for x,
the elements of this chain are meet-reducible.