Swan-like results for binomials and trinomials over finite fields of odd characteristic

被引:0
作者
B. Hanson
D. Panario
D. Thomson
机构
[1] University of Toronto,Department of Mathematics
[2] Carleton University,School of Mathematics and Statistics
来源
Designs, Codes and Cryptography | 2011年 / 61卷
关键词
Irreducible polynomials; Swan’s theorem; Discriminant; Finite fields; 11T06; 2Y05;
D O I
暂无
中图分类号
学科分类号
摘要
Swan (Pac. J. Math. 12:1099–1106, 1962) gives conditions under which the trinomial xn + xk + 1 over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{2}}$$\end{document} is reducible. Vishne (Finite Fields Appl. 3:370–377, 1997) extends this result to trinomials over extensions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{2}}$$\end{document}. In this work we determine the parity of the number of irreducible factors of all binomials and some trinomials over the finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{q}}$$\end{document}, where q is a power of an odd prime.
引用
收藏
页码:273 / 283
页数:10
相关论文
共 19 条
  • [1] Ahmadi O.(2007)On the distribution of irreducible trinomials over Finite Fields Appl. 13 659-664
  • [2] Bluher A.(2006)A Swan-like theorem Finite Fields Appl. 12 128-138
  • [3] Brent R.(2009)Ten new primitive binary trinomials Math. Comput. 78 1197-1199
  • [4] Zimmerman P.(2006)Swan’s theorem for binary tetranomials Finite Fields Appl. 12 301-311
  • [5] Hales A.(2010)Parity of the number of irreducible factors for composite polynomials Finite Fields Appl. 16 137-143
  • [6] Newhart D.(2009)The parity of the number of irreducible factors for some pentanomials Finite Fields Appl. 15 585-603
  • [7] Kim R.(2000)Integer factoring Des. Codes Cryptogr. 19 101-128
  • [8] Koepf W.(2009)Efficient Des. Codes Cryptogr. 50 351-358
  • [9] Koepf W.(1878)th root computation in finite fields of characteristic Comptes Rendus de l’Académie des Sciences Paris 86 1071-1072
  • [10] Kim R.(1962)Sur la décomposition d’une fonction entière en facteurs irréductibles suivant un module premier Pac. J. Math. 12 1099-1106