Quadratic properties of least-squares solutions of linear matrix equations with statistical applications

被引:0
作者
Yongge Tian
Bo Jiang
机构
[1] Central University of Finance and Economics,China Economics and Management Academy
[2] Shandong Institute of Business and Technology,College of Mathematics and Information Science
来源
Computational Statistics | 2017年 / 32卷
关键词
Quadratic matrix-valued function; Rank; Inertia; Löwner partial ordering; Linear model;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that a quadratic matrix-valued function ψ(X)=Q-X′PX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (X) = Q - X^{\prime }PX$$\end{document} is given and let S=X∈Rn×m|trace[(AX-B)′(AX-B)]=min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S} = \left\{ X\in {\mathbb R}^{n \times m} \, | \, \mathrm{trace}[\,(AX - B)^{\prime }(AX - B)\,] = \min \right\} $$\end{document} be the set of all least-squares solutions of the linear matrix equation AX=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AX = B$$\end{document}. In this paper, we first establish explicit formulas for calculating the maximum and minimum ranks and inertias of ψ(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (X)$$\end{document} subject to X∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \in {\mathcal S}$$\end{document}, and then derive from the formulas the analytic solutions of the two optimization problems ψ(X)=max\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (X) =\max $$\end{document} and ψ(X)=min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (X)= \min $$\end{document} subject to X∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \in \mathcal{S}$$\end{document} in the Löwner partial ordering. As applications, we present a variety of results on equalities and inequalities of the ordinary least squares estimators of unknown parameter vectors in general linear models.
引用
收藏
页码:1645 / 1663
页数:18
相关论文
共 40 条
[1]  
Cain BE(1992)The inertia of Hermitian matrices with a prescribed Linear Multilinear Algebra 31 119-130
[2]  
de Sá EM(1984) block decomposition Linear Algebra Appl 63 283-292
[3]  
Chabrillac Y(1999)Definiteness and semidefiniteness of quadratic forms revisited SIAM J Matrix Anal Appl 9 583-612
[4]  
Crouzeix JP(1998)Inertias of block band matrix completions Linear Algebra Appl 274 193-210
[5]  
Cohen N(1987)The inertia of certain Hermitian block matrices Linear Algebra Appl 85 121-151
[6]  
Dancis J(1990)The possible inertias for a Hermitian matrix and its principal submatrices Linear Algebra Appl 136 43-61
[7]  
da Fonseca CM(2014)Several consequences of an inertia theorem J Multivar Anal 131 279-292
[8]  
Dancis J(1968)On relations between BLUEs under two transformed linear models Linear Algebra Appl 1 73-81
[9]  
Dancis J(1968)Determination of the inertia of a partitioned Hermitian matrix Linear Algebra Appl 1 299-316
[10]  
Dong B(1984)On the inertia of some classes of partitioned matrices Linear Multilinear Algebra 16 179-195