Embedding some Riemann surfaces into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}^2}$$\end{document} with interpolation

被引:0
作者
Frank Kutzschebauch
Erik Løw
Erlend Fornæss Wold
机构
[1] Universität Bern,Mathematisches Institut
[2] Universitet i Oslo,Matematisk Institutt
关键词
32C22; 32E10; 32H05; 32M17; Riemann surfaces; Holomorphic embeddings; Interpolation;
D O I
10.1007/s00209-008-0392-8
中图分类号
学科分类号
摘要
We prove that several types of open Riemann surfaces, including the finitely connected planar domains, embed properly into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}^2}$$\end{document} such that the values on any given discrete sequence can be arbitrarily prescribed.
引用
收藏
页码:603 / 611
页数:8
相关论文
共 19 条
[1]  
Černe M.(2002)Embedding some bordered Riemann surfaces in the affine plane Math. Res. Lett. 9 683-696
[2]  
Forstnerič F.(1992)Embeddings of Stein manifolds Ann. Math. 136 123-135
[3]  
Eliashberg Y.(1999)Interpolation by holomorphic automorphisms and embeddings in J. Geom. Anal. 9 93-118
[4]  
Gromov M.(2002)Oka’s principle for holomorphic submersions with sprays Math. Ann. 322 633-666
[5]  
Forstnerič F.(2006)Proper holomorphic embeddings of finitely and some infinitely connected subsets of Math. Z. 252 1-9
[6]  
Forstnerič F.(2006) into Int. J. Math. 17 963-974
[7]  
Prezelj J.(1970)Embedding Riemann surfaces properly into Commun. Math. Helv. 45 170-184
[8]  
Fornæss Wold E.(2002)Plongements des variétés de Stein Math. Res. Lett. 9 567-577
[9]  
Fornæss Wold E.(1998)Interpolation by proper holomorphic embeddings of the disc into J. Math. Soc. Japan 50 685-695
[10]  
Forster O.(1989)Ahlfors functions on non-planar Riemann surfaces whose double are hyperelliptic J. Am. Math. Soc. 2 851-897