Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier–Stokes equations with vacuum

被引:0
作者
Li Fang
Zhenhua Guo
机构
[1] CNS,School of Mathematics
[2] Northwest University,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2016年 / 67卷
关键词
Compressible Navier–Stokes equations; Global existence; Density-dependent viscosity; Vacuum; Large-time behavior; 35Q35; 35D05; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to establish the global well-posedness and large-time asymptotic behavior of the strong solution to the Cauchy problem of the two-dimensional compressible Navier–Stokes equations with vacuum. It is proved that if the shear viscosity μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document} is a positive constant and the bulk viscosity λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} is the power function of the density, that is, λ=ρβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda=\rho^{\beta}}$$\end{document} with β∈[0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta \in [0,1],}$$\end{document} then the Cauchy problem of the two-dimensional compressible Navier–Stokes equations admits a unique global strong solution provided that the initial data are of small total energy. This result can be regarded as the extension of the well-posedness theory of classical compressible Navier–Stokes equations [such as Huang et al. (Commun Pure Appl Math 65:549–585, 2012) and Li and Xin (http://arxiv.org/abs/1310.1673) respectively]. Furthermore, the large-time behavior of the strong solution to the Cauchy problem of the two-dimensional barotropic compressible Navier–Stokes equations had been also obtained.
引用
收藏
相关论文
共 64 条
[1]  
Bresch D.(2003)Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model Commun. Math. Phys. 238 11-223
[2]  
Desjardins B.(2003)On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm Partial Differ. Equ. 28 843-868
[3]  
Bresch D.(2012)Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system Commun. Math. Phys. 309 737-755
[4]  
Desjardins B.(2006)On classical solution of the compressible Navier–Stokes equations with nonnegative initial densities Manuscr. Math. 120 91-129
[5]  
Lin C.-K.(2002)Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions J. Math. Pure Appl. 81 847-875
[6]  
Bresch D.(2011)Global classical large solutions to 1D compressible Navier–Stokes equations with density-dependent viscosity and vacuum J. Differ. Equ. 251 1696-1725
[7]  
Huang X.D.(2008)Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients SIAM J. Math. Anal. 39 1402-1427
[8]  
Li J.(2012)Lagrange structure and dynamical for spherical symmetric compressible Navier–Stokes equations Commun. Math. Phys. 309 371-412
[9]  
Cho Y.(1987)Global existence for 1D, compressible, isentropic Navier–Stokes equations with large initial data Trans. Am. Math. Soc. 303 169-181
[10]  
Kim H.(1995)Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data J. Differ. Equ. 120 215-254