Mutually unbiased maximally entangled bases in Cd⊗Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d\otimes \mathbb {C}^d$$\end{document}

被引:0
作者
Junying Liu
Minghui Yang
Keqin Feng
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Information Security, Institute of Information Engineering
[2] Tsinghua University,Department of Mathematical Sciences
关键词
Mutually unbiased bases; Maximally entangled states; Pauli matrices; Finite field; Generic character;
D O I
10.1007/s11128-017-1608-9
中图分类号
学科分类号
摘要
We study mutually unbiased maximally entangled bases (MUMEB’s) in bipartite system Cd⊗Cd(d≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d\otimes \mathbb {C}^d (d \ge 3)$$\end{document}. We generalize the method to construct MUMEB’s given in Tao et al. (Quantum Inf Process 14:2291–2300, 2015), by using any commutative ring R with d elements and generic character of (R,+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R,+)$$\end{document} instead of Zd=Z/dZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_d=\mathbb {Z}/d\mathbb {Z}$$\end{document}. Particularly, if d=p1a1p2a2…psas\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=p_1^{a_1}p_2^{a_2}\ldots p_s^{a_s}$$\end{document} where p1,…,ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1, \ldots , p_s$$\end{document} are distinct primes and 3≤p1a1≤⋯≤psas\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le p_1^{a_1}\le \cdots \le p_s^{a_s}$$\end{document}, we present p1a1-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1^{a_1}-1$$\end{document} MUMEB’s in Cd⊗Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d\otimes \mathbb {C}^d$$\end{document} by taking R=Fp1a1⊕⋯⊕Fpsas\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\mathbb {F}_{p_1^{a_1}}\oplus \cdots \oplus \mathbb {F}_{p_s^{a_s}}$$\end{document}, direct sum of finite fields (Theorem 3.3).
引用
收藏
相关论文
共 46 条
[1]  
Ivanović ID(1981)Geometrical description of quantal state determination J. Phys. A 14 3241-3245
[2]  
Wootters WK(1989)Optimal state-determination by mutually unbiased measurements Ann. Phys. 191 363-389
[3]  
Fields BD(2008)Wave-particle duality in multi-path interferometers: general concepts and three-path interferometers Int. J. Quantum Inf. 6 129-157
[4]  
Englert B-G(2010)On mutually unbiased bases Int. J. Quantum Inf. 8 535-640
[5]  
Kaszlikowski K(2002)Security of quantum key distribution using Phys. Rev. Lett. 88 127902-1-127902-4
[6]  
Kwek LC(2009)-level systems Phys. Rev. A 79 052101-1-052101-4
[7]  
Chee WH(2010)Mutually unbiased bases and generalized Bell states Phys. Rev. A 81 012113-1-012113-4
[8]  
Durt T(2011)Maximally entangled states via mutually unbiased collective bases N. J. Phys. 13 053047-1-053047-25
[9]  
Englert B-G(2004)Entanglement in mutually unbiased bases Lect. Not. Comput. Sci. 2948 137-144
[10]  
Bengtsson I(1993)Construction of mutually unbiased bases Phys. Rev. Lett. 70 1895-1899