The Eckardt point configuration of cubic surfaces revisited

被引:0
作者
Anton Betten
Fatma Karaoglu
机构
[1] Kuwait University,Department of Mathematics
[2] Namik Kemal University,Department of Mathematics
[3] Colorado State University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Finite geometry; Cubic surface; Eckardt point; Classification; Normal form; 05B25; 05E18; 14E05; 14J26; 51E25;
D O I
暂无
中图分类号
学科分类号
摘要
The classification problem for cubic surfaces with 27 lines is concerned with describing a complete set of the projective equivalence classes of such surfaces. Despite a long history of work, the problem is still open. One approach is to use a coarser equivalence relation based on geometric invariants. The Eckardt point configuration is one such invariant. It can be used as a coarse-grain case distinction in the classification problem. We provide an explicit parametrization of the equations of cubic surfaces with a given Eckardt point configuration over any field. Our hope is that this will be a step towards the bigger goal of classifying all cubic surfaces with 27 lines.
引用
收藏
页码:2159 / 2180
页数:21
相关论文
共 18 条
  • [1] Betten A(1999)Linear spaces with at most 12 points J. Comb. Des. 7 119-145
  • [2] Betten D(2019)Cubic surfaces over small finite fields Des. Codes Cryptogr. 87 931-953
  • [3] Betten A(1849)On the triple tangent planes of surfaces of the third order Camb. Dublin Math. J. 4 118-138
  • [4] Karaoglu F(1866)Die Geometrie auf den Flächen dritter Ordnung J. Reine Angew. Math. 65 359-380
  • [5] Cayley A(1915)Projective classification of cubic surfaces modulo 2 Ann. Math. 16 139-157
  • [6] Clebsch A(2019)Automorphisms of cubic surfaces in positive characteristic Izv. Ross. Akad. Nauk Ser. Mat. 83 15-92
  • [7] Dickson LE(1939)Properties of the cubic surface derived from a new normal Form Am. J. Math. 61 115-122
  • [8] Dolgachev I(1939)New point configurations and algebraic curves connected with them Bull. Am. Math. Soc. 45 731-735
  • [9] Duncan A(1964)The double-six of lines over J. Austral. Math. Soc. 4 83-89
  • [10] Emch A(1967)Classical configurations over finite fields. I. The double-six and the cubic surface with Rend. Mat. Appl. 5 115-152