Sparse Balanced Layout of Ellipsoids*

被引:0
|
作者
Y. G. Stoyan
T. E. Romanova
O. V. Pankratov
P. I. Stetsyuk
S. V. Maximov
机构
[1] National Academy of Sciences of Ukraine,A. Pidhornyi Institute of Mechanical Engineering Problems
[2] National Academy of Sciences of Ukraine,V. M. Glushkov Institute of Cybernetics
来源
Cybernetics and Systems Analysis | 2021年 / 57卷
关键词
sparse layout; ellipsoid of revolution (spheroid); quasi-phi-function; nonlinear programming; Shor’s r-algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The authors consider the problem of generating spheroidal voids in a three- dimensional domain of complex geometry, with regard for the constraints on the “sparseness” of voids subject to the system balance. The problem is reduced to the optimized layout of ellipsoids of revolution in a convex container (cylinder or cuboid), taking into account the prohibited zones, constraints on the feasible distances between objects, and the balance condition. The problem is aimed at maximizing the minimum distance between each pair of ellipsoids and each ellipsoid and the boundary of the container. Adjusted quasi-phi-functions for analytical description of the allocation constraints are defined. A mathematical model is constructed in the form of a nonlinear programming problem. A solution method is proposed that uses the multistart strategy in combination with smart algorithms to search for feasible and locally optimal solutions. The results of computating experiments are presented.
引用
收藏
页码:864 / 873
页数:9
相关论文
共 42 条
  • [1] Sparse Balanced Layout of Ellipsoids*
    Stoyan, Y. G.
    Romanova, T. E.
    Pankratov, O. V.
    Stetsyuk, P. I.
    Maximov, S. V.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (06) : 864 - 873
  • [2] Sparse Balanced Layout of Spherical Voids in Three-Dimensional Domains
    Y. G. Stoyan
    T. E. Romanova
    O. V. Pankratov
    P. I. Stetsyuk
    Y. E. Stoian
    Cybernetics and Systems Analysis, 2021, 57 : 542 - 551
  • [3] Sparse Balanced Layout of Spherical Voids in Three-Dimensional Domains
    Stoyan, Y. G.
    Romanova, T. E.
    Pankratov, O., V
    Stetsyuk, P., I
    Stoian, Y. E.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (04) : 542 - 551
  • [4] Sparse layout of irregular 3D clusters
    Romanova, Tatiana
    Pankratov, Alexander
    Litvinchev, Igor
    Dubinskyi, Vladimir
    Infante, Luis
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2023, 74 (01) : 351 - 361
  • [5] Packing ellipsoids by nonlinear optimization
    E. G. Birgin
    R. D. Lobato
    J. M. Martínez
    Journal of Global Optimization, 2016, 65 : 709 - 743
  • [6] Packing ellipsoids by nonlinear optimization
    Birgin, E. G.
    Lobato, R. D.
    Martinez, J. M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (04) : 709 - 743
  • [7] A Uniform Method for Computing the Distance between Ellipsoids
    Ping, Zhou Zhi
    Ke, Gan Sheng
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON ELECTRONIC COMMERCE AND SECURITY, VOL I, 2009, : 47 - 51
  • [8] A nonlinear programming model with implicit variables for packing ellipsoids
    Birgin, E. G.
    Lobato, R. D.
    Martinez, J. M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (03) : 467 - 499
  • [9] A nonlinear programming model with implicit variables for packing ellipsoids
    E. G. Birgin
    R. D. Lobato
    J. M. Martínez
    Journal of Global Optimization, 2017, 68 : 467 - 499
  • [10] A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids
    Birgin, E. G.
    Lobato, R. D.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 272 (02) : 447 - 464